

DIGITAL TRANSMISSION OF AN INITIAL FIRE REPORT
OVER A VHF RADIO NETWORK

Roy Belak
Dylan Gunn

Project Sponsor: Mike Winder, Technical Director, BCFS

Engineering Physics 459

University of British Columbia
Project No. 0408
March 31, 2004

i

Executive Summary

Congestion of internal radio channels plagues the British Columbia Forest Service

(BCFS) during fire season. High broadcast volumes arise as field personnel vocally

relay fire statistics and field reports to regional fire centres over the radio network. One

of the most commonly transmitted reports, the Initial Fire Report (IFR), is responsible for

a significant portion of this radio traffic.

A prototype system was developed to demonstrate the advantages of transmitting IFRs

digitally. The system hardware consists of independent Transmission and Reception

Modules that connect to the BCFS radio network via the external port of a standard issue

ICOM-F3 radio. The transmission module encodes IFR information entered by field

personnel as a voice-band frequency shifted signal which can be broadcast over the

BCFS radio network. A reception module located in a regional fire centre decodes the

received signal and sends it to the serial port of a PC. Software on the PC processes

the received IFR for errors and displays the information on the screen.

Testing of the device showed an average IFR transmission time of 2.7 seconds, which is

a substantial improvement over the one minute required for vocal transmission. This

suggests that the system can provide a significant reduction in radio traffic. In addition,

the accuracy of the transmissions exceeded 95% and with further refinement to

transmission protocols, both transmission time and accuracy can be improved

considerably.

It is therefore recommended that the BCFS employ the Digital IFR Transmission system

to help reduce radio congestion and consider widespread application of the technology.

ii

Table of Contents

List of Figures ... iii

1.0 Introduction ... 1

2.0 Discussion .. 3
2.1 Background ... 3
2.2 Theory ... 4
2.3 Statement of the Problem .. 6
2.4 The Solution Chosen for the Problem ... 6

2.4.1 IFR Transmission Module .. 7
2.4.2 IFR Reception Module .. 12
2.4.3 IFR Transmission Protocol ... 17

2.5 Testing Protocol .. 19
2.6 Results ... 20
2.7 Discussion of Results .. 21

2.0 Conclusions .. 24

3.0 Recommendations.. 26

Appendix A – Comparison of Deliverables with Proposal 28

Appendix B – Initial Fire Report ... 31

Appendix C – Operation Manual .. 32

Appendix D – Testing Results .. 34

Appendix E – Abbreviated Data Sheets .. 38

Appendix F – Transmission Module Source Code 51

Appendix G – Reception Module Source Code .. 63

Appendix H – Transmission Module Schematics 71

Appendix I – Reception Module Schematics .. 73

Appendix J – Photos ... 74

iii

List of Figures

Figure 1 - FSK Modulation.. 5

Figure 2 - Transmission Module .. 7

Figure 3 - Transmission Software Control Flow ... 12

Figure 4 - Signal Reception Module .. 13

Figure 5 - Reception Module Software Flowchart .. 15

Figure 6 - Reception Module Screen Shot .. 16

1

1.0 Introduction

During the peak fire season, from July to September, the British Columbia Forest

Service (BCFS) radio network becomes clogged with fire suppression related

transmissions. This has proven to be a detriment to the safety and overall performance

of the organization. As the radio system becomes increasingly congested, the vital

communication link between forestry personnel is compromised.

Initial Fire Reports (IFRs) are one of the most common field reports relayed over the

network. The Digital IFR Transmission system was developed to improve both the

transmission time and accuracy of IFR data being sent from field personnel to regional

dispatch centres. The traditional method of relaying an IFR by voice over a radio

channel takes approximately one minute and is prone to miscommunication and errors.

During busy fire seasons, the radio time being occupied by IFR transmissions often

results in substantial periods during which the radio network is inaccessible to other

personnel.

Initial investigation by the authors along with information provided by the sponsor

indicated that the Very High Frequency (VHF) radio network already used by the BCFS

provided a sufficient communication pathway over which digitally encoded information

could be transmitted. Based on this investigation, it would be possible to interface a

mobile, field-ready device with the existing network to broadcast IFR data in a fraction of

the time traditionally required.

This report was written to document the development of the Digital Initial Fire Report

(IFR) Transmission system developed for the Engineering Physics 459 Project Lab from

2

January to April of 2004. The report summarizes the work completed at the time of

writing, including a description of the deliverables produced, major problems

encountered during development, changes to the original project plan, and

recommendations concerning the continuation of the project. An outline of the report

structure with a brief description of the major sections is given below.

 Discussion: Background information and theory pertaining to the project are

followed by an analysis of the project work completed. A detailed description

of the solution obtained is compared to the original objectives of the project,

and a thorough analysis of the results obtained is provided.

 Conclusions: The conclusions section summarizes the results and

elaborates on the importance of the results achieved.

 Recommendations: Based on information given in the discussion and

conclusions sections, recommendations on the future continuation of the

project are given in this section.

 Appendices: The appendices contain supplementary information on the

project. They include data and information sheets on the hardware used in

the construction of the device, device schematics, results of tests completed,

source code for software written and a user’s manual for the device.

3

2.0 Discussion

2.1 Background

As chief steward for the crown land in BC, the BCFS is responsible for managing

wildfires in wooded areas. As fire season heats up, an increasing number of fire

suppression related voice transmissions are made on the BCFS radio network. As

transmissions become more frequent, it becomes increasingly difficult for Forest

Service employees to obtain enough radio airtime to perform their job. Radio

congestion has also been identified as a significant safety hazard should personnel

need immediate contact with dispatchers at regional fire centres. Any measure that

might alleviate radio traffic is being considered seriously by the BCFS.

In summer months, an Initial Fire Report (IFR) is one of the most commonly

transferred field reports relayed over the network. The IFR provides critical fire

details such as fire location, elevation, fuel type, and fire activity. Currently,

broadcasting an IFR by voice takes approximately 1 minute. With an average of

more than 2500 fires annually in BC, this amounts to almost 42 hours of radio time

during which other personnel cannot use the radio network. This problem is

exacerbated during fire “busts”, when many fires are discovered simultaneously.

The transmission of these IFRs virtually clogs the radio network, making all other

communication between personnel difficult.

The BCFS radio network uses half-duplex VHF Radio Frequency (RF) technology.

Field units (personnel) are given handheld or truck mounted radios with pre-

programmed frequencies. Communication with fire centres is coordinated through

4

an extensive repeater network established around the province. Messages sent

from field units are relayed via the repeater network to a destination repeater that is

connected to a fire centre through a traditional telephone cable.

In order to reduce the network congestion during fire season, the BCFS has many

options at its disposal. Current innovations in frequency multiplexing and other

technologies are providing means to increase the bandwidth of data transmission

networks. Unfortunately, most of these solutions require considerable investment in

upgrading the existing infrastructure to make it compatible with new hardware and

software. Although these upgrades will likely be inevitable in order for the BCFS to

maintain the operability of the network, these solutions take time to implement

properly. A short-term solution for dealing with increased radio volume is needed. A

simple interim resolution involves digitizing IFR data and sending it over the radio

network.

2.2 Theory

As with most RF networks, the bandwidth available for communication is restricted to

a band just large enough to allow intelligible transmissions. In the case of the BCFS

network, this bandwidth is confined to 2.5 KHz. This narrow bandwidth limits the

number of available options for implementing a digital over-link. The entire

frequency band is located in the audible range, meaning that any digital data

encoding will require the transmission of tones. Similar RF telemetry schemes have

been implemented for civilian and military purposes in the past. Many of these

schemes perform automatic data logging and transmission, some common examples

include products for collecting tidal and geological data used by meteorologists.

5

The fundamentals behind the Digital IFR Transmission system revolve around

encoding IFR data fields into digital format and transmitting the information over the

network. To use the radio channel as an effective medium, the digital information

needs to be encoded into a variable frequency signal.

Previous experimentation conducted by the BCFS has found that data transmission

rates on the order of 1200 – 2400 baud are feasible on the existing system (Barry

Cowan, Lead Radio Hand, telephone discussion, September 2003). Frequency Shift

Keying (FSK) was identified as the most suitable method for converting digital

information to analog signals given the relatively small bandwidth. FSK modulation

is based on using two analog frequencies to represent binary states. Other digitizing

schemes such as Dual Tone Multiple Frequency (DTMF) use a larger number of

different tones, and can therefore transmit more information per unit of transmitted

data. Adding more tones compresses the frequency bands available to each state

and therefore results in increased decoding errors. FSK was selected over these

more efficient protocols in order to maintain data integrity. Figure 1 below illustrates

the principles behind FSK modulation.

Figure 1 - FSK Modulation

Digital
Signal

Analog
Representation

6

2.3 Statement of the Problem

Excessive radio network traffic has deleterious effects on the efficiency and safety of

the BCFS personnel. Frequently occurring transmissions, such as IFRs, are

responsible for much of this congestion. Apart from direct consumption of radio time,

these transmissions also require dispatchers to transcribe the data being transmitted.

Eliminating these requirements would free these resources for other uses.

A more efficient method for getting the initial fire information from the point of fire

discovery to central dispatch was needed. More specifically, a device to digitize and

relay IFR data over the network as a set of audible tones was desired. As a criterion

for proper operation, this device must be compatible with the current BCFS radio

network. This compatibility would allow any solution to provide easy integration with

existing resources, and therefore, reduce the time needed for full implementation.

Furthermore, it is desirable that financial obligations involved with the implementation

of any data transmission solution be light.

2.4 The Solution Chosen for the Problem

The solution chosen was designed to satisfy the project objectives given the

resources and time available. This required independent Transmission and

Reception Modules that could interface with the current BCFS radio network by

plugging into the external microphone/speaker ports of standard field radios, and

software / protocol that would allow data to be transmitted quickly and efficiently with

a low rate of error and strong error detection capabilities. The following discussion is

broken into sections corresponding to the components of the system delivered. The

first section deals with the hardware and software developed for the Transmission

7

Module, the second details the solution for the Reception Module, and the last

section provides a description of the transmission protocol developed.

2.4.1 IFR Transmission Module

The Transmission Module acts as the data entry interface between personnel in

the field and the regional fire centre. Once the user inputs the required data

fields, the module encodes the IFR information for transmission over the BCFS

radio network via a handheld radio. Figure 2 below shows the current

configuration of the Transmission Module.

 Figure 2 - Transmission Module

8

2.4.1.1 IFR Transmission Module Hardware

TM3105 Modem: The fundamental component of the transmission hardware

is the Texas Instruments TCM3105 1200 Baud Frequency Shift Keying (FSK)

modem. The modem converts the digital signal representing encoded IFR

information to an analog signal with frequencies in the voice-band range. This

signal is then sent to the transmitting radio through the external microphone

port. This particular modem was chosen over newer, more powerful modem

ICs for several reasons. Modern modem ICs designed for cellular phone

applications are equipped with several sophisticated features such as call

display and caller ID that were not needed for this project. Furthermore,

these modems are designed to transmit at speeds above 9600 baud, which is

well beyond the bandwidth available on the radio system.

Although the TCM3105 is a very popular modem among hobbyists, it is no

longer manufactured and is only available in small quantities from specialty

distributors at relatively high prices. The project proposal originally specified

that the Bell202 standard would be used to modulate the digital signal,

producing a mark (logic 1) frequency of 1200Hz and a space (logic 0)

frequency of 2200Hz. However, once the modem was set up for testing, it

was determined that use of the Bell202 standard would require complex

timing circuitry to configure the modem. The CCITT V.23 standard, with mark

and space frequencies at 1300Hz and 2100Hz respectively, was much easier

to implement and therefore chosen to replace the Bell202. The analog output

of the modem was coupled to a voltage divider to reduce its amplitude from

approximately 3V to 200mV peak-to-peak.

9

PIC Microcontroller: The Microchip PIC18F452 microcontroller was chosen

as the control computer for the Transmission Module as it is equipped with

more than sufficient processing power and RAM to handle the simultaneous

operation of various parts of the module. In addition, the 18F452 has an

embedded Addressable Universal Asynchronous-Synchronous Receiver

Transmitter (AUSART) serial communication port that can be configured to

output serial data at a variety of baud rates. In order to operate the AUSART

at 1200 baud, it was necessary to use a 4MHz oscillator to time the chip,

which resulted in an overall processor speed of 1MHz. The amount of RAM

available on the 18F452 exceeded the amount required to store IFR

information entered by the user. Although the capabilities of the PIC far

exceeded the requirements of the project, it was deemed safe to err on the

side of caution for the development stage of the project.

COTO-0325 Reed Relay: The external microphone input to which the IFR

Transmission Module is connected is sensitive to very small signals, on the

order of 5-10mV. Almost any signal input can cause the radio to begin

transmitting at the incorrect time. A Coto reed relay controlled by the PIC

was used to produce a physical break in the signal line from the transmitting

modem to the microphone input, mimicking the configuration of the external

speaker/microphones provided with the radios.

Keypad: A 16-digit alphanumerical keypad manufactured by Grayhill

(#96BB2-056-R) was added to the Transmission Module to allow the user to

enter IFR information. The keypad came without external ICs to handle

10

polling/reading operations and these had to be programmed in the PIC

control software.

Liquid Crystal Display: In order for the user to view IFR information as it is

entered, a 16X2-line LCD display manufactured by Optrex (DMC-16207) was

interfaced with the Transmission Module. The LCD data and power lines

were wired straight to port B of the PIC. A library of functions for controlling

the LCD was provided with the MPLAB software, and little work was required

to make the LCD operational.

Initial tests of the transmission circuitry (PIC and modem) proved successful,

but once the LCD was connected to the PIC, data transmission was no longer

reliable. A quick analysis of the circuit revealed that the speed at which the

PIC was sending data to the modem (1200 baud) decreased substantially

when the LCD was connected to the PIC. The first attempted solution

involved powering the LCD from a separate connection to the power rail,

rather than sharing a power connection with the PIC. This failed to work and

required a different approach. The next attempt was to shut off the LCD

during transmission of the IFR. In order to achieve this, the power line to the

LCD was wired through several reed and transistor switch configurations that

were controlled by the PIC. However, none of these were able to shut off the

PIC during transmission of the signal, and further analysis showed that the

LCD was receiving power from the PIC through the data lines of port B. The

PIC was then programmed to ground all ports connected to the LCD during

transmission. This solved the problem.

11

Power Supply: A 9V battery used to power the transmission module was

stepped down to 5V with a Fairchild MC7805 voltage regulator. Capacitors

were placed across the terminals of the regulator in order to stabilize the

signal.

2.4.1.2 IFR Transmission Module Software

Software for the Transmission Module was coded in C to allow easy

integration with the MPLab Desktop Environment. A demo compiler available

from Microchip, MCC 18, was used to convert the C-code source files to the

assembly level instructions needed by the assembler. The MCC 18 compiler

is a standard ANSI C compiler that comes with a diverse library of functions.

These libraries were used extensively for port addressing, LCD module

control, and variable manipulation.

The source code is broken into different files to increase the modularity of the

program. These files are detailed in Appendix F. A flow diagram showing the

flow of control for this software is shown on the following page.

12

Figure 3 - Transmission Software FlowDiagram

2.4.2 IFR Reception Module

The Reception Module is used to demodulate the signal from the external

speaker port of the receiving radio and reconstruct the original data. The

Reception Module also converts the TTL logic levels to RS232 for input to the

COM port of a standard PC. The delivered module is meant as a temporary

solution for preliminary testing with handheld radios and in a full implementation

the receiving radio equipment would already be interfaced to a computer. Figure

4 is a diagram of the Reception Module.

13

 Figure 4 - Signal Reception Module

2.4.2.1 IFR Reception Module Hardware

TCM3105 Modem: The Texas Instruments TCM3105 modem was used in

the Reception Module for the same reasons previously mentioned. The

external speaker line from the receiving radio was capacitively coupled to the

analog input of the modem to remove any DC component from the signal.

Maxim MAX232 Level Converter: The digital output of the receiving modem

was wired to the input of a MAX232 level converter to convert the TTL logic

levels from the modem to RS232 levels understood by a PC. The output of

the MAX232 converter was wired to a DB9 serial connector to allow

communication with the COM port of a standard PC.

14

2.4.2.2 IFR Reception Module Software

LabVIEW 7.0 was chosen as the development platform for the Reception

Module software as it contains several built-in functions for controlling the

serial ports on a computer. In addition, it is possible to build stand-alone

LabVIEW executables which can be run on any computer that has the

LabVIEW 7.0 runtime engine installed. The LabVIEW runtime engine can be

downloaded free of charge from the National Instruments website

(www.ni.com), and there are no restrictions on distribution. Initial plans to

develop an executable using C++ or Visual Basic were quickly discarded

when it was determined that a custom driver would have to be written to gain

access to the serial ports on versions of Microsoft Windows newer than

Windows 98.

The front panel of the reception software, shown in Fig 6, indicates the

operating status of the program as it receives and processes IFRs. Once an

IFR has been fully received and processed, the program displays the

information on the screen and prompts the operator to save the IFR in a user-

defined file. A debugging version of the program that displays additional data

on the program flow was also produced, and a screen shot of its front panel

can be found in Appendix G. Figure 5 on the following page illustrates the

software flowchart for the Reception Module.

15

Figure 5 - Reception Module Software Flowchart

16

Figure 6 - Reception Module Screen Shot

The reception software source code is a 15-frame stacked sequence

structure. Each frame is executed in sequential order and program flow

moves from one frame to the next according to specific conditions. The

process is repeated after the last frame in the sequence has been executed.

The program continually monitors the COM1 serial port read buffer and waits

for an IFR transmission to appear. Once an IFR appears, the program scans

the transmission character by character, looking for errors and replacing them

17

with an error flag. The received IFR information is then decoded into a more

convenient format and displayed on the screen. The user is then prompted to

save the information to a file of his choice. A full printout of the 15 frames of

the block diagram is given in Appendix G.

2.4.3 IFR Transmission Protocol

Seventeen distinct pieces of information corresponding to latitude, longitude,

elevation, and field codes Alpha through November are transmitted in a single

IFR. Nine numbers are required for longitude and latitude each, four numbers

are required for elevation in meters, and one number each is required for the

remaining field codes. This corresponds to a total of 36 characters of information

that need to be transmitted for each IFR.

Speed and accuracy were the primary objectives for designing the

communication protocol. The inability of LabVIEW to perform bitwise

manipulation of data eliminated using parity check bits, polynomial cyclic

redundancy checking, and Reed-Solomon encoding for error detection. It was

decided to forego the correction of errors in a transmitted IFR and focus on their

detection while keeping transmission time to a minimum.

The design of the transmission protocol then focused on arranging the IFR data

in a way that could be sorted by LabVIEW. LabVIEW’s ability to break up a string

of data between user-defined delimiters meant that by adding a start delimiter at

the front of the IFR string and appending another delimiter to the end of the

string, data representing the IFR could be sorted from other non-IFR characters.

LabVIEW also contains a pre-defined function for parsing a string and replacing

selected characters with a replacement string. Marker characters were added

18

between the individual segments of IFR data so that LabVIEW could separate the

IFR information and replace the markers with display information corresponding

to each piece of data. By programming LabVIEW to replace the letter ‘s’ with the

string ‘ELEVATION: ‘, the following encoded IFR string

XXXXXXXs1200XXXXXX

(where ‘X’ represents arbitrary characters) would be replaced by

XXXXXXXELEVATION: 1200XXXXXX.

By adding line feed characters to the replacement strings, and repeating this

operation for every piece of IFR data, a continuous string of IFR information

could be parsed into a vertical list displaying the IFR data in an easy to read

format. For example, the string below

XXXXXq104667002r049078997s2500XXXXX

could be processed to produce the following portion of a report:

Latitude: 104667002
Longitude: 049078997
Elevation: 2500

Without the ability to perform bitwise error correction it was decided that the most

effective solution was to simply transmit the IFR information twice and then have

LabVIEW compare the received strings character-by-character to determine any

discrepancies. Although this solution would not provide any means of correcting

19

errors, the possibility of an error being received undetected was extremely low,

and the exact location of any errors within the received IFR string could be easily

determined.

The last consideration in the protocol development was the timing needed to

open the radio channel. It became apparent that the delay between attempting to

open the channel, and the channel opening varied by several hundred

milliseconds. Without accounting for this variable delay, the first portion of an

IFR was often truncated. To compensate, several ‘X’ characters were added as

padding at the start of the IFR transmission and the final form of the transmitted

string is given below:

XXXXXXXXXXpq123456789r987654321s2000A1B2C3D4E5F
6G7H8I9J0K1L2M3N4opq123456789r987654321s2000A1B
2C3D4E5F6G7H8I9J0K1L2M3N4oXXXXX

The ‘p’ and ‘o’ characters mark the beginning and end delimiters of the

transmitted stream respectively, and the other lower case letters all correspond to

the data markers to be replaced.

2.5 Testing Protocol

Testing of the modules was needed to verify that they met the objectives. Under

field conditions, the modules would utilize the repeater network to establish a data

path to regional dispatch. This option was not available as the ICOM F3’s provided

from the BCFS were not programmed with repeater frequencies. Instead, testing

was done with direct radio-to-radio transmission, which allowed the authors to test

the modules thoroughly without broadcasting on the BCFS repeater channels. As a

consequence, the Digital IFR Transmission device is still in need of testing through

these types of channels. It is anticipated that the results obtained from transmission

20

through the repeater network will be representative of those from radio-to-radio

transmission.

Testing consisted of sending 20 IFRs through the device. Data was entered

manually via the keypad and verified on the LCD screen, as would be performed

under field conditions. The Reception Module was connected to a 2.4GHz PC

running the custom executable that was designed for decoding the IFR. As the data

was received it was presented on the screen, and subsequently verified for accuracy.

Half of the IFRs were transmitted at moderate range (~1 km), and the other half were

transmitted with the radios in close proximity.

2.6 Results

Testing of the Transmission and Reception Modules was an ongoing process, and

although the final testing protocol consisted of only 20 IFR transmissions, hundreds

were performed prior to this for thorough debugging. Following debugging, data was

collected as described in Section 2.5.

Table 1 below summarizes the results from the 20 IFR transmissions. Failed

transmissions included any IFR that had one or more errors. Two transmission

distances were used: Bench Test (adjacent radios) and Moderate Range (~ 1 km line

of sight). Transmission time constitutes the average amount of radio time that was

needed to send the IFR. Details of the testing are shown in Appendix D.

Test Type IFRs
Transmitted

Perfect
Transmission

Failed
Transmission

Perfect Trans.
Ratio

Transmission
Time (s)

Bench
Test

10 10 0 100% 2.7

Moderate
Range

10 9 1 90% 2.7

Total 20 20 1 95% 2.7

Table 1 - Transmission Results

21

2.7 Discussion of Results

Initial test results for the Digital IFR transmission system show a strong potential for

full application of the technology. The delivered prototype represents a marked

improvement over the current practice of relaying IFRs vocally, decreasing

transmission time by a factor of 20. Given additional time, the authors strongly

believe that the transmission reliability of the system could approach 100%.

Although reliability statistics for vocal IFR transmission are not readily available,

mistakes during transcription of poorly enunciated IFRs are not uncommon.

As previously discussed, data integrity could be further enhanced by utilizing more

sophisticated error detection and correction algorithms. The method chosen,

relaying data twice and checking for inconsistencies between transmissions, is

inefficient. Although this strategy has a very high probability of identifying incorrect

data, it cannot reconstruct the correct value. Once an error has been detected, the

data field represented by the corrupt transmission must be discarded. Forward

error correction algorithms could both reduce the number of detection bits required

and correct a moderate number of transmission errors, allowing faster transmission

times with higher transmission reliability.

The ICOM F3 showed inconsistent delays between channel initialization (microphone

cueing) and opening of the radio channel. As a result, a delay was needed between

microphone cueing and data transmission that would allow all the data to be

transmitted without truncation. A delay of one second was used to provide a large

factor of safety and it is expected that this time could be reduced substantially with

further development.

22

Ergonomics of the transmission module were thoroughly scrutinized. The physical

dimensions of the Module are much larger than ideal, but not unreasonable

considering the current stage of development. The input / output functions of the

keypad and LCD screen were adequate, but could also benefit from some

refinement. The most notable deficiencies of the Transmission Module include:

 Large outer dimensions

 Poor LCD contrast under low-light conditions

 Difficult keypad access with gloved hands

 Occasional lock-up of microcontroller (requires resetting)

 Slow data entry

 Questionable durability

The above shortcomings could easily be corrected on subsequent prototypes.

Useful insight into the functionality of the Reception Module was also gained during

final testing. Due to the temporary nature of this module, intermediate circuitry

linking the radio and computer was built on a solderless bread-board. More robust

circuit construction was avoided because this unit was not intended for use as a final

prototype. Linking a handheld radio to a computer was only done to facilitate

preliminary testing of the Transmission Module. A finished Reception Module would

likely utilize some data acquisition hardware connected directly to the BCFS radio

network at a regional fire centre. All software for the Reception Module was written

in LabVIEW as a stand-alone executable to allow an easy transition to this type of

radio interface.

23

The software responsible for decoding the IFR showed reliable performance. Some

minor problems identified with the current version of the reception software include:

 Unintuitive presentation of data fields

 Inconsistent program recovery after severe transmission

errors

 Arbitrary choice of output file format

In general, performance of the Digital IFR Device met the objectives of the project.

Connecting the Transmission and Reception Modules with their associated

peripherals is straightforward, as is entering the required data. Although small

improvements to the functionality and user interface of both modules would increase

their user-friendliness, they are currently adequate for preliminary field testing.

24

2.0 Conclusions

The Digital IFR Transmission System provides a very efficient method for the BCFS to

relay initial fire reports from remote field locations to regional fire centers. By digitizing

data that is traditionally relayed by voice, the transmission time and error rate are

reduced substantially. Automatic capture and logging of incoming IFRs provides further

benefits by eliminating the need for dispatchers to transcribe IFR data.

System hardware consists of two independent battery-powered modules that interface

with the BCFS radio network by plugging in to the external microphone/speaker ports of

ICOM-F3 handheld radios. The Transmission Module is a field-capable prototype into

which the user can enter and review IFR data and it is encased in a sturdy fire-resistant

PVC case. The Reception Module is a stand-alone unit that decodes the incoming IFR

information and passes it to the serial port of a PC via a DB9 serial cable. The reception

software is a stand-alone LabVIEW executable that can be run on any computer on

which the LabVIEW 7 runtime engine is installed. The software scans a received IFR

stream for possible errors, processes and displays the IFR information to the user, and

then prompts the user to save it in a user-defined log file.

The system quickly and reliably transmitted IFRs; of 20 IFRs that were transmitted with

an average transmission time of 2.7 seconds, only one contained errors. When

comparing broadcast times between voice and digital transmission, the IFR device

showed substantial timesavings. With oral transmission of an IFR taking approximately

one minute, and the IFR device needing only 2.7 seconds, the result is nearly 57

seconds of freed network airtime.

25

Tests of the system show that the objectives have been satisfied and potential exists for

further development of the project. Large improvements could be achieved by using

more elaborate error correction / detection protocols. These types of protocols could

reduce the rate of failed transmissions substantially, while further decreasing

transmission times. Other minor changes to the ergonomics and user-friendliness of the

modules could also enhance the functionality of the system. Future considerations

include two-way communication, automatic retransmission of corrupted data, and

multiplexed communication over voice channels. Although these types of improvements

would enhance the utility of the Digital IFR Transmission system, this device already

provides a superior alternative to current methods of data communication.

26

3.0 Recommendations

Development of the Digital IFR Transmission system resulted in the following

recommendations:

i. A Digital IFR Transmission System should be implemented by the BCFS.

Based on successful preliminary testing of the IFR device, it is clear that the

BCFS could realize substantial benefits from its implementation, particularly

reduced radio usage and increased transmission efficiency.

ii. The Reception and Transmission Modules should be refined to increase

user-friendliness.

Although both modules are adequate for field-testing in their current

configuration, their ergonomics are crude. The Reception Module needs a more

intuitive user display and the Transmission Module needs an improved menu

system and smaller casing.

iii. A more sophisticated error handling protocol should be developed.

Transmission accuracy and efficiency would be improved substantially by

employing better error correction / detection protocols. Algorithms such as

Cyclical Redundancy Checking, Hamming codes, or Reed-Solomon codes all

provide error correcting capabilities that would further enhance the utility of the

digital transmission system.

27

iv. The digitization of other field reports should be explored by the BCFS.

The improvements demonstrated by the digital IFR transmission system could be

applied to other field reports used by the BCFS to improve communication in

several areas.

v. The Reception Module should be integrated with BCFS fire centre

hardware.

The current form of the Reception Module was designed for the purpose of

testing the Transmission Module. As such, it was not intended as a final solution

for interfacing with the radio network. A more permanent solution might include

mating a Data Acquisition Card (DAC) with the radio network at fire centres.

vi. The design of the Transmission Module should be reconsidered to allow

more flexible data entry.

The current Transmission Module works adequately for inputting IFR data. In

order to allow further gains from digitizing data, a new user interface would be

necessary. A PDA or other such device might be able to interface with a

Transmission Module and provide for a more flexible means of data entry.

28

Appendix A – Comparison of Deliverables with Proposal

Although the objectives stated in the project proposal were met, there were several

deviations from the project plan. Most of these deviations were related to

underestimates of the time required to perform tasks or achieve milestones. Relatively

few changes were made to the design specified in the proposal, and for the most part

changes were effected in order to improve the design, as opposed to removing a

specification that could not be achieved.

The schedule specified in the proposal had a very sequential structure, where one task

followed directly after another and a set of completed tasks culminated in a milestone.

The actual project schedule followed a much different order; however, as it turned out

many of the tasks were very inter-related and had to be completed simultaneously. For

example, the IFR decoding software could not be written without a complete

understanding of the transmission protocol, and the transmission protocol could not be

specified without first knowing the transmission characteristics of the modems and

radios.

The proposal also gave clear instructions as to which group member was to perform a

specific task. However, once the schedule of the tasks began to change, it became

clear that the allocation of tasks was going to shift as well. This more flexible

arrangement proved to be an improvement as it reduced the dependence of one group

member’s work on that of another.

29

The most significant deviations from the proposed schedule were related to the

development of the transmission protocol, design of the Transmission Module, and the

programming of the decoding software. February 7th was the proposed completion date

for selecting the communication protocol. Although the most important characteristics of

the protocol, such as baud rate and mark and space frequencies, were determined at

this time, the exact form of the IFR transmission sequence could not be determined until

the capabilities of the reception software were understood. This was not achieved until

mid March.

With regard to the Transmission Module, initial setup and programming of the

PIC18F452 proved to be much more time-intensive than originally forecast. Five hours

were allocated to programming the PIC, and this proved to be a gross underestimate.

Difficulties compiling and linking C files on the networked computers in the Project Lab

slowed programming considerably, and several days were lost to configuring compiler

libraries and linker scripts. When the LCD display was connected to the PIC, the

transmission speed of the AUSART (serial port) decreased considerably from 1200

baud. Two days were lost trying to find a method for shutting off the LCD during

transmission of the data. Control of the transmitting radio also presented an unforeseen

problem. Small voltage levels appearing on the external microphone line caused the

radio to enter the transmit mode and approximately ten hours were spent to find a

solution. These difficulties added approximately 50 hours to the development of the

Transmission Module.

Several hours were spent investigating the design of the Reception Module software

before it was realized that using Microsoft Visual Basic or C++ to gain access to the

computer’s serial ports would require advanced driver programming to bypass Windows

30

control of hardware. Approximately three full days were then required to develop a

program capable of receiving, checking, and processing a received IFR in LabVIEW 7.0

and several subsequent hours were spent debugging and enhancing the program.

The only significant negative change to the planned design was the elimination of the

ability to correct errors in the received signal. Given more time, a program capable of

performing bitwise operations for error checking and correcting could be developed in

C++ or Visual Basic. Access to PC serial ports could be gained by purchasing a kernel

driver to bypass Windows control of the hardware, or by developing a driver using

Microsoft Foundation Classes and Windows dynamically linked libraries. Encasing the

Transmission module in a durable, hand-sized ABS case was performed in addition to

the objectives stated for the prototype, and helped to move the system beyond a simple

proof of concept to a field-ready prototype capable of demonstrating its performance in a

real working environment.

These deviations from the project plan were offset by a substantial increase in work

performed by the authors to avoid sacrificing the objectives of the project. In hindsight,

the discrepancies between the proposed project development and the actual project

development could have been avoided by making more realistic estimates of the time

required. This may have led to a reduced set of objectives. Many of the tasks involved

learning new programming techniques, interfacing new hardware, and developing new

solutions, all of which require considerable time investment before progress can be

made.

31

Appendix B – Initial Fire Report

32

Appendix C – Operation Manual

1) Install Reception Module software onto a PC with a functioning COM1 Port.
2) Hook up the RS232 cable to the Reception Module and computer. Note: The

end that is wrapped with red wire needs to be connected to the computer.

3) Connect the radio to the Reception Module and turn on the radio to HALF

VOLUME. Turn on the Reception Module switch.

33

4) Attach the transmitting radio to the Transmission Module. Turn them both on.

5) Start the IFR program in continuous run mode (depicted as a set of circular

arrows on the top left portion of the screen).
6) Enter IFRs – some notes on the various data fields:

i. * button is used to accept data
ii. D button is used to delete data
iii. Latitude and Longitude require 9 characters before entering
iv. Elevation requires 4 characters before entering
v. Letter Data Fields only accept one character before entering

34

Appendix D – Testing Results

Data Transmission Test Completed 02/24/2004
Input test stream 40..80..120......................

.................160..200..240
Receiving radio

volume

Received data stream
3600mV – 100% 40..80..120......................

.................160..200..240
1800mV – 50% 40..80..120....................

....................160..200..2
40

1200mV – 33% ..40..80..........................
..............120..160..200..
......................................240

900mV – 25% ..40..........
�.. rrrrrrrrrrrrrrrrrrrrr

rr................................40.............
.......

720mV – 20%
min.

É2rrrrrb0rpr"r2rrr2rrrrrrrrrbprprrrrrbrrrr2rrrpprrrbr20rrRrrrr`r÷ ÷ ÷
�r0rbpRrrprr2rrrrr Rrprrpbr2rrr2Â‚prRrpbbrpp`bpb2prrbrrRrrrrr2rrr*É

‰ÁÁÉÁÉ‰ÉÁÁÉÉÉpp2pprrrrrprr2rrprrpprrrrRrbrrprrrrrrrrrpprrrr2prr
rr`rr’¢rbbrrprrrrrp2rrrrrrrrpprrprprprrrprprr‚€rprRrr2rpr0`rrrpr2rbrrrÀ‚rr
rbppbrrrrrÁIÉÉÁÉÉÉ....(.&p

35

R
a
d
io

-R
a
d
io

 T
ra

n
s
fe

r
F
u
n
c
ti
o
n
 (
J
a
n
 1

1
,
1
3
)

-1
0-505

1
0

1
5

2
0 1
0
0

1
0
0
0

1
0
0
0
0

In
p
u
t
F
re

q
u
e
n
c
y
 (
H

z
)

1
3
-J

a
n

1
1
-J

a
n

36

IFR Transmission test – 03/25/2004

INITIAL FIRE REPORT
RECEIVED: 3/25/2004 10:11:34 AM

LATITUDE: 217443564
LONGITUDE: 012416744
ELEVATION: 0850
ALPHA: 1
BRAVO: 3
CHARLIE: 2
DELTA: 5
ECHO: 4
FOXTROT: 6
GOLF: 2
HOTEL: 6
INDIA: 4
JULIET: 4
KILO: 8
LIMA: 1
MIKE: 9
NOVEMBER: 3

INITIAL FIRE REPORT
RECEIVED: 3/25/2004 10:12:16 AM

LATITUDE: 210653187
LONGITUDE: 002664754
ELEVATION: 1540
ALPHA: 2
BRAVO: 6
CHARLIE: 4
DELTA: 2
ECHO: 3
FOXTROT: 8
GOLF: 1
HOTEL: 6
INDIA: 2
JULIET: 4
KILO: 4
LIMA: 2
MIKE: 5
NOVEMBER: 3

INITIAL FIRE REPORT
RECEIVED: 3/25/2004 1:49:09 PM

LATITUDE: 122454344
LONGITUDE: 306995417
ELEVATION: 1890
ALPHA: 3
BRAVO: 9
CHARLIE: 5
DELTA: 1
ECHO: 3
FOXTROT: B
GOLF: 4
HOTEL: 5
INDIA: 6
JULIET: 2
KILO: 1
LIMA: 6
MIKE: 3
NOVEMBER: 6

INITIAL FIRE REPORT
RECEIVED: 3/25/2004 2:51:47 PM

LATITUDE: 225241865
LONGITUDE: 2152**ERROR**5355
ELEVATION: 2155
ALPHA: 2
BRAVO: 3
CHARLIE: 4
DELTA: 1
ECHO: 6
FOXTROT: **ERROR**
GOLF: 1
HOTEL: 2
INDIA: 3
JULIET: 4
KILO: 6
LIMA: 1
MIKE: 3
NOVEMBER: 5

37

Final Test Data

Transmission # Range Pass Fail
Time

(s) Comments
1 Close 2.6 screen blanked out after transmission

2 Close 2.7

3 Close 2.7

4 Close 2.8

5 Close 2.5

6 Close 2.7

7 Close 2.7

8 Close 2.6

9 Close 2.9

10 Close 2.7

11 Moderate 2.5

12 Moderate 2.7

13 Moderate 2.8

14 Moderate 2.7

15 Moderate 2.7 54 errors, unknown cause

16 Moderate 3

17 Moderate 2.9

18 Moderate 2.5

19 Moderate 2.6

20 Moderate 2.6

Total 19 1 2.695

38

Appendix E – Abbreviated Data Sheets

Excerpt from PIC18F452 Data Sheet

39

Excerpt from PIC18F452 Data Sheet

40

 Excerpt from PIC18F452 Data Sheet

41

Excerpt from TCM 3105 Data Sheet

42

Excerpt from TCM 3105 Data Sheet

43

Excerpt from MAX232 Data Sheet

44

Excerpt from MAX232 Data Sheet

45

Excerpt from MAX232 Data Sheet

46

Excerpt from LM7805 Data Sheet

47

Excerpt from LM7805 Data Sheet

48

Excerpt from LM7805 Data Sheet

49

Excerpt from Optrex DMC-16207 Data Sheet

50

Excerpt from Optrex DMC-16207 Data Sheet

51

Appendix F – Transmission Module Source Code

/**
FILE: Radio2.c
DATE: March 30, 2004
AUTHOR: Roy Belak
This file provides the main program
***/

#include "Radio.h"
#include <Keypad.h>
#include <xlcd.h>
#include <delays.h> //for delay functions
#include <stdlib.h> //for data conversion functions for debugging
#include <usart.h> //for usart (serial port) functions

const rom char null = (char) 0x00;
int j,y,t,p,k,q; //Characters for the for loops
char Longitude [10];// = {0,0,0,0,0,0,0,0,0,null};
char Latitude [10];// = {0,0,0,0,0,0,0,0,0,null};
char Elevation [5];// = {0,0,0,0,null};
char data_output [76];
char review;
char review_done;
char alpha;
char bravo;
char charlie;
char delta;
char echo;
char foxtrot;
char golf;
char hotel;
char india;
char juliet;
char kilo;
char lima;
char mike;
char november;

void main (void)
 {

 char space[4]= {' ','=',' ',null};

 Delay10KTCYx(10);
 //Initialize sequence
 Initialize_Ports();
 Initialize_LCD ();
 Initialize_Keypad ();
 Initialize_USART();

 Longitude [9] = null;
 Latitude [9]= null;
 Elevation [4]= null;

 putrsXLCD ("Press * to Enter"); //Prompt user to begin IFR program
 skip_characters(16);

52

 putrsXLCD ("IFR Data");
 Wait_For_Enter();

 putrsXLCD("Latitude"); //Prompt user for Latitude
 skip_characters(8);
 Get_Keypad_String(Latitude,9,1);
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD("Longitude"); //Prompt user for Longitude
 skip_characters(9);
 Get_Keypad_String(Longitude,9,1);
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD("Elevation (m)"); //Prompt user for Elevation
 skip_characters(13);
 Get_Keypad_String(Elevation,4,0);
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("ALPHA"); //Prompt user for fire size
 skip_characters (5);
 alpha = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("BRAVO"); //Prompt user for fire rank
 skip_characters (5);
 bravo = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("CHARLIE"); //Prompt user for fuels
 skip_characters (7);
 charlie = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("DELTA"); //Prompt user for Values at risk
 skip_characters (5);
 delta = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("ECHO"); //Prompt user for Wind
 skip_characters (4);
 echo = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("FOXTROT"); //Prompt user for Adjacent Fuels
 skip_characters (7);
 foxtrot = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("GOLF"); //Prompt user for Slope
 skip_characters (4);
 golf = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("HOTEL"); //Prompt user for Aspect
 skip_characters (5);
 hotel = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

53

 putrsXLCD ("INDIA"); //Prompt user for Slope Position
 skip_characters (5);
 india = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("JULIET"); //Prompt user for Access
 skip_characters (6);
 juliet = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("KILO"); //Prompt user for Available water
 skip_characters (4);
 kilo = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("LIMA"); //Prompt user for paper trailed
 skip_characters (4);
 lima = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("MIKE"); //Prompt user for photos
 skip_characters (4);
 mike = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD ("NOVEMBER"); //Prompt user for Suspected cause of Fire
 skip_characters (8);
 november = Get_Data_Field();
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 putrsXLCD("Review Data?"); //Prompt user to review the entered data
 skip_characters(12);
 putrsXLCD("* = Yes D = No");

 review = review_input ();

 if (review == '*')
 {
 putrsXLCD("Press * to Scrol");
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD("Longitude");
 skip_characters(9);
 putsXLCD(Longitude);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD("Latitude");
 skip_characters(8);
 putsXLCD(Latitude);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD("Elevation (m)");
 skip_characters(13);
 putsXLCD(Elevation);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("ALPHA");
 putsXLCD (space);
 WriteDataXLCD(alpha);

54

 skip_characters(9);

 putrsXLCD ("BRAVO");
 putsXLCD (space);
 WriteDataXLCD(bravo);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("CHARLIE");
 putsXLCD (space);
 WriteDataXLCD(charlie);
 skip_characters(11);

 putrsXLCD ("DELTA");
 putsXLCD (space);
 WriteDataXLCD(delta);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("ECHO");
 putsXLCD (space);
 WriteDataXLCD(echo);
 skip_characters(8);

 putrsXLCD ("FOXTROT");
 putsXLCD (space);
 WriteDataXLCD(foxtrot);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("GOLF");
 putsXLCD (space);
 WriteDataXLCD(golf);
 skip_characters(8);

 putrsXLCD ("HOTEL");
 putsXLCD (space);
 WriteDataXLCD(hotel);
 Delay1KTCYx(10);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("INDIA");
 putsXLCD (space);
 WriteDataXLCD(india);
 skip_characters(9);

 putrsXLCD ("JULIET");
 putsXLCD (space);
 WriteDataXLCD(juliet);
 Delay1KTCYx(11);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD ("KILO");
 putsXLCD (space);
 WriteDataXLCD(kilo);
 skip_characters(8);

 putrsXLCD ("LIMA");
 putsXLCD (space);
 WriteDataXLCD(lima);
 Delay1KTCYx(9);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

55

 putrsXLCD ("MIKE");
 putsXLCD (space);
 WriteDataXLCD(mike);
 skip_characters(8);

 putrsXLCD ("NOVEMBER");
 putsXLCD (space);
 WriteDataXLCD(hotel);
 Delay1KTCYx(13);
 Wait_For_Enter();
 WriteCmdXLCD(CLEAR_DISP);

 putrsXLCD("Data Correct?");
 skip_characters(13);
 putrsXLCD("* = Yes D = No");
 review_done = review_input ();

 if (review == 'D') //if the data is incorrect, the user must re-enter all the data
 main();

 }
 data_output[0] = 'X';
 data_output[1] = 'X';
 data_output[2] = 'X';
 data_output[3] = 'X';
 data_output[4] = 'X';
 data_output[5] = 'X';
 data_output[6] = 'X';
 data_output[7] = 'X';
 data_output[8] = 'X';
 data_output[9] = 'X'; //construct the transmission array
 data_output[10] = 'X';
 data_output[11] = 'X';
 data_output[12] = 'X';
 data_output[13] = 'X';
 data_output[14] = 'X';
 data_output[15] = 'p';
 data_output[16] = 'q';
 data_output[17] = Latitude[0];
 data_output[18] = Latitude[1];
 data_output[19] = Latitude[2];
 data_output[20] = Latitude[3];
 data_output[21] = Latitude[4];
 data_output[22] = Latitude[5];
 data_output[23] = Latitude[6];
 data_output[24] = Latitude[7];
 data_output[25] = Latitude[8];
 data_output[26] = 'r';
 data_output[27] = Longitude[0];
 data_output[28] = Longitude[1];
 data_output[29] = Longitude[2];
 data_output[30] = Longitude[3];
 data_output[31] = Longitude[4];
 data_output[32] = Longitude[5];
 data_output[33] = Longitude[6];
 data_output[34] = Longitude[7];
 data_output[35] = Longitude[8];
 data_output[36] = 's';
 data_output[37] = Elevation[0];
 data_output[38] = Elevation[1];
 data_output[39] = Elevation[2];
 data_output[40] = Elevation[3];
 data_output[41] = 'a';
 data_output[42] = alpha;
 data_output[43] = 'b';
 data_output[44] = bravo;
 data_output[45] = 'c';
 data_output[46] = charlie;
 data_output[47] = 'd';
 data_output[48] = delta;
 data_output[49] = 'e';
 data_output[50] = echo;
 data_output[51] = 'f';
 data_output[52] = foxtrot;
 data_output[53] = 'g';
 data_output[54] = golf;

56

 data_output[55] = 'h';
 data_output[56] = hotel;
 data_output[57] = 'i';
 data_output[58] = india;
 data_output[59] = 'j';
 data_output[60] = juliet;
 data_output[61] = 'k';
 data_output[62] = kilo;
 data_output[63] = 'l';
 data_output[64] = lima;
 data_output[65] = 'm';
 data_output[66] = mike;
 data_output[67] = 'n';
 data_output[68] = november;
 data_output[69] = 'o';
 data_output[70] = 'o';
 data_output[71] = 'o';
 data_output[72] = 'X';
 data_output[73] = 'X';
 data_output[74] = null;
 data_output[75] = null;

 putrsXLCD("Press * to");
 skip_characters(10);
 putrsXLCD("Transmit");
 Wait_For_Enter(); //Prompt user for to press * to initialize transmission

 Transmit (data_output);
 main();

}

/**
FILE: KEYPAD.C
DATE: March 30, 2004
AUTHOR: Roy Belak
This file provides all the functions needed to interface
the keypad PORT A of the microcontroller.
***/

#include <Keypad.h>
#include <p18f452.h>
#include <delays.h>
#include <xlcd.h>

const rom char blank = (char) 0b10100000;
const rom char degree = (char) 0b11011111;
const rom char minute = (char) 0b00100111;
int tag1 = 0;
int tag2 = 0;
int tag3 = 0;

//Keypad initialization
void Initialize_Keypad (void)
{
 ADCON1 = 0x07; //all pins on PORT A and E are digital I/O
 TRISA = 0x30; //set all the lower nibble as output, upper nibble (RA4 and RA5) as input
 TRISE = 0x03; //set pins RE1, RE2 as input, RE3 as output
 PORTEbits.RE2 = 0; //ensure that pin RE3 is not high
}

//function to return the character that is entered into the keypad
void Get_Keypad_String (char *buffer, int length, int data_type)
{

57

 char data = 'X';
 char debounced_data = 'X';
 int i = 0;
 tag1 = 0;
 tag2 = 0;
 tag3 = 0;

 while (1)
 {

 if (data_type == 1 && (i == 3 || i == 6 || i == 9) && (tag1 == 0 || tag2 == 0 || tag3 == 0)) //this case is for the latitude /
longitude
 {
 if (i == 3 && tag1 == 0)
 {
 tag1 = 1;
 WriteDataXLCD(degree);
 WriteDataXLCD(blank);
 }
 else if (i == 6 && tag2 == 0)
 {
 tag2 = 1;
 WriteDataXLCD(minute);
 WriteDataXLCD(blank);
 }

 else if (i == 9 && tag3 == 0)
 {
 tag3 = 1;
 WriteDataXLCD('"');
 WriteDataXLCD(blank);
 }
 }

 data = locate_key(); //set data to the value of the button being pushed

 if (data != 'X') //case data has been entered by the user
 {
 debounced_data = debounce(data);

 if (debounced_data == data)
 {
 if (data == '*' && i == length) //case where the string has been fully entered
 {
 Delay10KTCYx(30);
 return;
 }

 else if (data == '*' && i != length)
 {}

 else if (data == 'D' && i != 0)
 {
 if(data_type == 1 && (i == 3 || i == 6 || i == 9))
 {
 WriteCmdXLCD(SHIFT_CUR_LEFT);
 WriteCmdXLCD(SHIFT_CUR_LEFT);
 WriteDataXLCD(blank);
 WriteCmdXLCD (SHIFT_CUR_LEFT);
 if (i == 3)
 tag1 = 0;
 else if (i == 6)
 tag2 = 0;
 else if (i == 9)
 tag3 = 0;
 }

 WriteCmdXLCD (SHIFT_CUR_LEFT);
 WriteDataXLCD(blank);
 WriteCmdXLCD (SHIFT_CUR_LEFT);
 Delay10KTCYx(30);
 i = i - 1;
 }

 else if (data == 'D' && i == 0)

58

 {}

 else if (i == length)
 {}

 else
 {
 WriteDataXLCD(data);
 buffer[i] = data;
 Delay10KTCYx(30);
 i = i + 1;
 }
 }
 else
 data = 'X';

 }

 }
}

char Get_Next_Character(void)
{
 char data2;
 char debounced_data2;

 while (1)
 {
 data2 = locate_key(); //set data to the value of the button being pushed

 if (data2 != 'X') //case data has been entered by the user
 {
 debounced_data2 = debounce(data2);

 if (data2 == debounced_data2) //case where the key is confirmed
 {
 Delay10KTCYx(30);
 return data2;
 }

 else
 data2 = 'X';
 }
 }
}

char Get_Data_Field(void)
{
 char new_char = 'X';
 char debounced_new_char = 'X';
 int i = 0;
 char data_char;

 while (1)
 {
 new_char = locate_key(); //set data to the value of the button being pushed

 if (new_char != 'X') //case data has been entered by the user
 {
 debounced_new_char = debounce(new_char);

 if (new_char == debounced_new_char) //case where the key is confirmed
 {
 if (new_char == '*' && i == 1)
 {
 Delay10KTCYx(30);
 return data_char;
 }

59

 else if (new_char == '*' && i == 0)
 {
 }

 else if (new_char == 'D' && i == 0)
 {
 }

 else if (new_char == 'D' && i == 1)
 {
 i = 0;
 WriteCmdXLCD (SHIFT_CUR_LEFT);
 Delay10KTCYx(30);
 }

 else
 {
 if (i == 0)
 {
 i = 1;
 data_char = new_char;
 WriteDataXLCD(data_char);
 Delay10KTCYx(30);
 }

 else
 {}
 }
 }

 }
 }
}

//function to locate the neccessary key - lookup table
char locate_key (void)
{

 PORTA = 0x01; //raise the first row to 5 V
 if (Pin5 == 1 && Pin6 == 0 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '1';
 }
 if (Pin5 == 0 && Pin6 == 1 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '2';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 1 && Pin8 == 0)
 {
 PORTA = 0;
 return '3';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 0 && Pin8 == 1)
 {
 PORTA = 0;
 return 'A';
 }

 PORTA = 0x02; //raise the second row to 5 V
 if (Pin5 == 1 && Pin6 == 0 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '4';
 }
 if (Pin5 == 0 && Pin6 == 1 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;

60

 return '5';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 1 && Pin8 == 0)
 {
 PORTA = 0;
 return '6';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 0 && Pin8 == 1)
 {
 PORTA = 0;
 return 'B';
 }

 PORTA = 0x04; //raise the third row to 5 V
 if (Pin5 == 1 && Pin6 == 0 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '7';
 }
 if (Pin5 == 0 && Pin6 == 1 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '8';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 1 && Pin8 == 0)
 {
 PORTA = 0;
 return '9';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 0 && Pin8 == 1)
 {
 PORTA = 0;
 return 'C';
 }

 PORTA = 0x08; //raise the fourth row to 5 V
 if (Pin5 == 1 && Pin6 == 0 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '*';
 }
 if (Pin5 == 0 && Pin6 == 1 && Pin7 == 0 && Pin8 == 0)
 {
 PORTA = 0;
 return '0';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 1 && Pin8 == 0)
 {
 PORTA = 0;
 return '#';
 }
 if (Pin5 == 0 && Pin6 == 0 && Pin7 == 0 && Pin8 == 1)
 {
 PORTA = 0;
 return 'D';
 }

 else //case no key found , or an illegal combination
 {
 PORTA = 0;
 return 'X';
 }
}

//primative debouncing function
char debounce(char temp_char)
{

 Delay1KTCYx(25); //25 ms delay to allow key to debounce

 temp_char = locate_key();

61

 return temp_char;
}

/**
FILE: radio_functions.c
DATE: March 30, 2004
AUTHOR: Roy Belak
This file provides all the peripheral functions needed for
radio2.c
***/

#include "radio.h"
#include "keypad.h"
#include <xlcd.h>
#include <float.h> //for floating point operations
#include <math.h> //for math operations: floor
#include <usart.h> //for serial communications
#include <delays.h> //for dealy functions (0.1us per instruction @ 40MHz)
#include <stdlib.h> //data conversion for debugging

char control = 'X';
char control2 = 'X';

void Initialize_Ports (void)
{
 INTCONbits.GIEH = 0; //Disable all interupts
 ADCON1 = 0x07; //Set port A for digital output

 TRISC = 0x00; //Set Port C for output
 PORTCbits.RC4 = 0; //Ensure that Transmission Relay is closed

 TRISD = 0x00; //intitialize all pins on port D as output
 PORTDbits.RD2 = 1; //turn on the LCD

}

void Initialize_LCD (void)
{
 OpenXLCD(EIGHT_BIT & LINES_5X7);
}

void Initialize_USART(void)
{
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 207);
}

//Functions for the operation of the LCD
void DelayFor18TCY(void)
{
 Delay10TCYx(4); //Delay 20 Instruction Cycles
}

void DelayPORXLCD(void)
{
 Delay1KTCYx(20); //20 ms delay (20 for 4 MHZ)

62

}

void DelayXLCD(void)
{
 Delay1KTCYx(10); //10 ms delay (10 for 4 MHZ)
}

void Wait_For_Enter(void)
{
 control = 'X';
 while (control != '*') //case when desired character has not been pushed
 {
 control = Get_Next_Character ();
 }
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);
}

char review_input()
{
 control2 = 'X';
 while (control2 != '*' && control2 != 'D') //case when desired character has not been
pushed
 {
 control2 = Get_Next_Character ();
 }
 WriteCmdXLCD(CLEAR_DISP);
 Delay1KTCYx(10);

 if (control2 == '*')
 return '*';

 else if (control2 == 'D')
 return 'D';
}

void Transmit(char *data_buffer)
{
 PORTDbits.RD2 = 0; //Turn off the power to the screen.
 PORTDbits.RD7 = 0; //Turn off R/W bit on LCD
 PORTDbits.RD6 = 0; //Turn off E bit on LCD
 PORTDbits.RD5 = 0; //Turn off R/S bit on LCD
 PORTB = 0; //turn off the data bits to the LCD

 Delay10KTCYx(10);
 PORTCbits.RC4 = 1; //Control signal to activate relay
 PORTCbits.RC4 = 1;

 Delay10KTCYx(100); //600 millisecond wait prior to transmission This should be increased if the signal
 //is clipped at the beggining
 putsUSART(data_buffer);

 Delay10KTCYx(10);

 putsUSART(data_buffer);

 Delay10KTCYx(10);

 PORTCbits.RC4 = 0; //Close transmission relay
 PORTDbits.RD2 = 1; //Power up Screen
 Initialize_LCD(); //Re-initialize the LCD
 Delay10KTCYx(10);
 Initialize_LCD();
}

63

Appendix G – Reception Module Source Code

64

65

66

67

68

69

70

71

Appendix H – Transmission Module Schematics

72

73

Appendix I – Reception Module Schematics

74

Appendix J – Photos

PIC18F452
Microcontroller

TCM3105
Modem

COTO 0325
Reed Relay

9 Volt Battery

LCD Connection

External Mic/Spk
Cable to Transmitting
Radio

MC7805 Voltage
Regulator

Power Switch

Keypad Bus

Transmission

Module

75

Keypad Bus
Optrex
DMC16207
LCD

Grayhill Keypad
96BB2-056-R

Transmission

Module

76

9 Volt
Battery

DB9 Connector
to COM1 Power Switch

MC7805 Voltage
Regulator

External Mic/Spk
Cable to Receiving
Radio

TCM3105
Modem

MAX232 Level
Converter

Reception
Module

