Lecture 2 – Analog circuits

.. or How to detect the Alarm beacon

IR detection

What we want: 0 - 5 V DC signal representing the IR amplitude.

Analog signal processing

- IR signal is AC, TINAH analog needs DC(?)
- IR signal is low (few mV), TINAH range is 0-5V
- Can TINAH sample analog inputs fast enough to distinguish 1kHz from 10kHz?
- Other IR sources could interfere with beacon signal

Discrete devices: BJT Bipolar Junction Transistors

Analog circuits – discrete devices: BJT

Application: light detection

Phototransistor:

Acts like BJT except charge carriers generated by incident light add to the base current.

In other words, $I_c \propto$ Incident light

IR detection

Build a circuit that:

- Uses an OP805 and a resistor to detect variations in light with a voltmeter.
- Determine whether increasing or decreasing the load resistance makes it more sensitive
- Note: OP805 will see some room light use your hand to block it, and use the voltmeter to detect the change in signal.

Switching Time Test Circuit

Selecting R_L

-

Vout = $I_c * R_L$

Analog circuits – filtering and detection

 $Z_2/Z_1 = 3$

What is the result of the following:

Analog circuits – filtering and detection

Analog circuits – DC block

Capacitors:

- Block DC
- Pass high frequencies > $1/(2\pi RC)$

DC block

Imaging adding a DC block to your photodetector circuit:

- C1 BAT1 **OP805** 470 µF 9 V 1) R4 1 kΩ VM1 (R3 1 kΩ C1 470 µF BAT1 OP805 9 V OA2 TL082 2) +R3 1 kΩ
- Which circuit would you build? Why?

Analog circuits – filtering and detection

Eg 2:
$$Z_2 = 100 k\Omega$$

 $Z_1 = 1 \Omega$ $V_{out} = -100,000 V_{in} !!$

Several problems:

- $I_1 = 1A$ for $V_{in} = 1$ V !! (excessive load for upstream circuitry)
- Gain Bandwidth product ~ 3 MHz. This would limit the bandwidth of the amplifier from DC up to 30 Hz (i.e. not a very responsive system!).

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Since V_{-} is a virtual ground, input impedance seen by V_{in} is Z_{1}

Vin

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations

Since Op-amp inputs source or sink very little current (depends on type), input impedance in this case is very high. This is a commonly used buffer to separate your low impedance circuit from a sensitive source that you need to measure without drawing current.

Vout

+

V-

						-										
	PARAMETER	TEST CONDITIONS	TA [†]		TL081C TL082C TL084C		1	L081A0		-	LO81B0 L082B0 L084B0			TL081I TL082I TL084I		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	
Vio Input offset voltage	Vo = 0 Rs = 50 Ω	25°C		3	15		3	6		2	3		3	6	mV	
10	···	-0	Full range			20			7.5			5			9	
∝vi	Temperature coefficient of input offset voltage	V _O = 0 R _S = 50 Ω	Full range		18			18			18			18		μ₩°C
	the state of the state of the	¥0	25°C		5	200		5	100		5	100		5	100	pА
OI	Input offset current+	40 = 0	Full range			2			2			2			10	nA
in.	Input bigg surgest \$	Vo =0	25°C		30	400		30	200		30	200		30	200	pА
18	Input biats current +	*0-0	Full range			10			7			7			20	nA
VICE	Common-mode input R voltage range		25°C	±11	-12 to 15		±11	-12 Io 15		±11	-12 to 15		±11	-12 to 15		v
		R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
VON	Maximum peak	R _L ≥ 10 kΩ	E di secono	±12			±12			±12			±12			v
	output voitage swing	R _L ≥ 2 kΩ	Fuil range	±10	±12		±10	±12		±10	±12		±10	±12		
A	Large-signal	$V_O=\pm10V, R_L\geq2k\Omega$	25°C	25	200		50	200		50	200		50	200		Marchel
~vD	amelification	Y() = ± 10 +, P ₁ ⇒ 2 k0	Full range	15			25			25			25			VIIIV
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		Mirta
ŋ	Input resistance		25°C		1012			1012			1012			1012		Ω
Chin	Common-mode	VIC = VICRMIN,	2610	70	86		75	88		71	-00		75	86		d B

electrical characteristics, V_{CC \pm} = ±15 V (unless otherwise noted)

ļ

Gain-Bandwidth limit (Hz) = Gain * Max. Frequency = CONSTANT

		÷ • -				-										
	PARAMETER	TEST CONDITIONS	TA [†]		TL081C TL082C TL084C			TL081A(TL082A(TL084A(TL081B0 TL082B0 TL084B0			TL081I TL082I TL084I		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	hi lanuk alkadua kara	V	25°C		3	15		3	6		2	3		3	6	
VIO	input onset voltage	v0=0 RS=50Ω	Full range			20			7.5			5			9	mv
αVIO	Temperature coefficient of input offset voltage	V _O = 0 R _S = 50 Ω	Full range		18			18			18			18		μ₩°C
	1	V0	25°C		5	200		5	100		5	100		5	100	pA
'IO	Input offset current+	40 = 0	Full range			2			2			2			10	nA
lun.		V _O = 0	25°C		30	400		30	200		30	200		30	200	pА
чв	Input bias current+		Full range			10			7			7			20	nA
VICR	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 10 15		±11	-12 to 15		±11	-12 to 15		v
		R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
VoM	Maximum peak	$R_L \ge 10 \ k\Omega$	Euf conce	±12			±12			±12			±12			v
	oorbor vorage swing	$R_L \ge 2 k\Omega$	Fuil range	±10	±12		±10	±12		±10	±12		±10	±12		
	Large-signal	$V_{\Omega} = e^{\frac{1}{2}} \Omega V$, $R_{I} \ge 2 k\Omega$	25°C	25	200		50	200		50	200		50	200		
âun.	amplification	$V_O=\pm10V, R_L\geq 2k\Omega$	Full range	15			25			25			25			V/mV
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		MHz.
	Input resistance		25°C		1012			1012			1012			1,12		Ω
CMRR	Common-mode rejection ratio	VIC = VICRmin, Vo = 0 Re = 50.0	25°C	70	86		75	86		75	86		75	86		đB

electrical characteristics, V_{CC±} = ±15 V (unless otherwise noted)

.

TL082: Gain*Bandwidth = 3 MHz

 \rightarrow This means that at a gain of 100, Bandwidth is 30 kHz.

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Op-amp input voltages (V_+, V_-) must be at least a few volts away from the power rails (+Vcc, -Vcc). Applying input voltages equal or near the power rails will cause the Op-amp to behave unexpectedly.

Rail-to-rail Op-amps are an expensive solution to this limitation.

PARAMETER		TEST CO	NDITIONS	TA [†]	TL081C TL082C TL084C			TL081AC TL082AC TL084AC			-	FLO81B FL082B4 FL084B4	6	TL0811 TL0821 TL0841			UNIT
					MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Vio	Input offset voltage	Vo = 0	Re = 50.0	25°C		3	15		3	6		2	3		3	6	mìv
*10	inpa crists ronage	*U - v	NO - 00 m	Full range			20			7.5			5			9	111.2
∝vio	Temperature coefficient of input offset voltage	V _O = 0	$R_{\rm S}$ = 50 Ω	Full range		18			18			18			18		μV/°C
i	· · · · · · · · · · · · · · · · · · ·	Ma = 0		25°C		5	200		5	100		5	100		5	100	pА
'IO	Input offset current+	v0 = 0		Full range			2			2			2			10	nA
				25°C		30	400		30	200		30	200		30	200	pА
'IB	Inclusion and entry	A0 = n		r un nu ge-			40			7			7			20	nA
VICR	Common-mode input voltage range			25°C	± 11	- 12 to 15		±11	-12 Io 15		±11	- 12 to 15		±11	-12 to 15		۷
		$R_L = 10 \ k\Omega$		25°C	±12	±13.5		±12	± 13.5		±12	±13.5		112	a recu		
VoM	television of south a second south of	Rj. 2 10 KΩ									±12			±12			V
	output voitage swing	$R_L \ge 2 k \Omega$		Fuil range	±10	±12		±10	±12		±10	±12		±10	±12		
Å	Large-signal	$V_{\rm O} = \pm 10$ V,	$R_L \ge 2 \; k\Omega$	25°C	25	200		50	200		50	200		50	200		h d Samh d
MD	amplification	$V_{\rm O}$ = ± 10 V,	$R_L \geq 2 \; k \Omega$	Full range	15			25			25			25			VAIIV
B ₁	Unity-gain bandwidth			25°C		3			3			3			3		MHz
ri	Input resistance			25°C		10 ¹²			10 ¹²			10 ¹²			1012		Ω
CMRR	Common-mode	VIC = VICR	nin, De - 50 O	25°C	70	86		75	86		75	86		75	86		

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current / voltage limitations

Op-amp output terminals can only provide a few mA of current. Motors, lamps and similar high current devices cannot typically be driven by a normal OPamp. High power Op-amps exist that can provide much higher current levels. Output voltage range is also limited within a few volts of the power rails.

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Op-amp terminals can act as small current sources. These Bias Currents can become large error or offset voltages if the resistors in the circuit are large.

Eg: 20 nA bias current * 10 M Ω = 200 mV!

PARAMETER T		TEST CONDITIONS	TA [†]	TL081C TL082C TL084C			TL081AC TL082AC TL084AC			1	LO81B0 L082B0 L084B0		TL081I TL082I TL084I			UNIT
				MIN	TYP	MAX	MIN	түр	MAX	MIN	түр	MAX	MIN	TYP	MAX	
Vie	Input offeet without	V0 D600	25°C		3	15		3	6		2	3		3	6	and d
*10	input oneon votage	40-0 NS-001	Full range			20			7.5			5			9	mv
∝vio	Temperature coefficie a or input	V _O = 0 μ _D = 50 Ω	Full range		18			18			18			18		μV№
line instant summet t	Vo = 0	25°C		5	200		5	100		5	100		5	100	рA	
-10	input onset current+	*0-0	Full range			2			2			2			10	nA
^I IB Input bias cum	Input higg current I	Vo = 0	25°C		30	400		30	200		30	200		30	200	pА
	input this current+	•0-•	Full range			10			7			7			20	nA
VICR	Common-mode input voltage range		25°C	±11	- 12 to		±11	-12 10		±11	-12 to		+11	-12 to 15		V
	Maximum peak output voltage swing	R ₁ = 10 kΩ	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
Vom		R _L ≥ 10 kΩ		±12			±12			±12			±12			v
		R _L ≥2kΩ	Full range	±10	±12		±10	±12		±10	±12		±10	±12		
A	Large-signal	$V_O=\pm10V, R_L\geq2k\Omega$	25°C	25	200		50	200		50	200		50	200		Minuk
~VD	amplification	$V_O=\pm10V, R_L\geq 2k\Omega$	Full range	15			25			25			25			VAIII
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		MHz
ŋ	Input resistance		25°C		1012			1012			1012			1012		Ω
CMRR	Common-mode rejection ratio	VIC = VICRMIN, VO = 0 Re = 50.0	25°C	70	86		75	86		75	86		75	86		œ

electrical characteristics, V_{CC±} = ±15 V (unless otherwise noted)

ŗ

엳

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

The circuit above corrects for bias current induced error and is now only subject to offset current. Z3 = Z1||Z2

Summary:

- Keep resistors in 1K to 500K range unless you really know what you're doing.
- Don't ask a single amplifier to provide huge gains (>30?)
- Don't drive motors, lamps, or other heavy loads with a normal op-amp (power op-amps exist for this, or use a transistor)
- Keep input voltages away from the op-amp voltage rails (unless using rail-to-rail opamps)

Analog circuits – filtering and detection

To understand filters you should first understand the difference between the TIME DOMAIN and FREQUENCY DOMAIN

"Transfer Function" = Vout/Vin = $H(\omega)$

So: $V_{out}(\omega) = H(\omega) * V_{in}(\omega)$

This is all in terms of ω since, in general, impedances are functions of ω .

$$Z_{cap} = 1/j \omega C$$

$$Z_{ind} = j \omega L$$

$$Z_{res} = R$$

Similar to voltage divider: \Box except ω dependent.

$$V_{out}(\omega) = [V_{in}(\omega)/(Z_1 + Z_2)] * Z_2$$

$$H(\omega) = \frac{Z_2}{Z_1 + Z_2}$$

So: $H(\omega) = Z_2/(Z_1 + Z_2)$

For resistors, this is just the well known voltage divider: $R_2/(R_1+R_2)$

Now plug in a resistor and a capacitor:

 $H(\omega) = \frac{1}{1 + j\omega RC}$ For low frequencies (small ω), H = 1 For high frequencies (large ω), H = 0 **This is a LOW PASS FILTER**

At $\omega = 1/RC$, H begins to decrease in amplitude.

 $f_0 = 1/(2\pi RC) = 3.3 \text{ kHz}$

Analog circuits: Transfer Functions

<u>Bode plots</u>: a graphical representation of frequency response on logarithmic axes.

Vertical axis:

 $20\log_{10}(H)$

Horizontal axis: log₁₀(f) (20 is used instead of 10 so the result will represent power ~ V^{2})

-3 dB = $\frac{1}{2}$ as much power as 0 dB

 V_{out} is $1/\sqrt{2}$ of V_{in} at -3dB

Log of frequency is used to ensure linear plots from 1/f or 1/fⁿ functions

Pole: $1/(1+j\omega/\omega_0)$ -20 db/decade in amplitude after ω_0 , -90 phase

Zero: $(1+j\omega/\omega_0)$ +20 db/decade in amplitude after ω_0 , +90 phase

Analog circuits: Simple Pole $H(\omega) = \frac{1}{1 + j\omega RC}$ **Bode Plot:** Magnitude (dB) Phase (degrees) w0 (Hz) 0.0 0.0-\$30.00 -2.0 -10.0 -4.0 Max freq (Hz) -20.0 -6.0 1000 -8.0--30.0 -10.0 -40.0 -12.0 -14.0--50.0 -16.0 -60.0 -18.0 -20.0 -70.0 -22.0 -80.0 -24.0 -90.0 -26.0-100 999 10 100 1 10 999 -20db/decade - 45 deg, 1/RC -3dB, 1/RC

-90 deg

Analog circuits: Simple Zero

 $H(\omega) = 1 + j\omega RC$

Analog circuits: Active Filters

Analog circuits: Transfer Functions

<u>Bode plots</u>: a graphical representation of frequency response on logarithmic axes.

Pole: $1/(1+j\omega/\omega_0)$ -20 db/decade in amplitude after ω_0 , -90 phase

Zero: $(1+j\omega/\omega_0)$ +20 db/decade in amplitude after ω_0 , +90 phase

Analog circuits: Active Filters

Remember –20dB/dec for each POLE

More advanced filters: Biquad

42

Discrete devices: diodes

SUPER-DIODE rectifier circuit This circuit acts like a perfect diode, without the 0.7V deadband prior to turn-on.

What bad thing happens if R1 is too big?

- Consider the frequency you want to filter out
- Consider the response time you want

Zener Diodes

Use 5V Zener Diodes to protect your TINAH Board

Zener diodes conduct under reverse bias when a specific voltage is exceeded – in our case 5.1V

Debugging Circuits

Learn to systematically check your circuits:

• **Power rails:**

 Check that 15V is really 15V; if not, localize the component that is shorting the power rail. Check power at each chip.

• <u>Physical check</u>:

- Check pinouts, missing/loose wires, etc.
- **Isolate stages** where possible
 - Check output of stage 1 if ok plug into stage 2 and see if stage 1 output is degraded.
 - If ok, check output of stage 2 etc
- <u>Keep wiring TIDY!</u>

Lab 2 Tips

•<u>Capacitors</u> – electrolytic capacitors have polarity, may explode if inserted backwards

