Lecture 2 – Analog circuits

I

..or How to detect the Alarm beacon

IR detection

What we want: $0 - 5$ V DC signal representing the IR amplitude.

Analog signal processing

- IR signal is AC, TINAH analog needs DC(?)
- IR signal is low (few mV), TINAH range is 0-5V
- Can TINAH sample analog inputs fast enough to distinguish 1kHz from 10kHz?
- Other IR sources could interfere with beacon signal

Discrete devices: BJT Bipolar Junction Transistors

Analog circuits – discrete devices: BJT

Application: light detection

Phototransistor:

Acts like BJT except charge carriers generated by incident light add to the base current.

In other words, $I_c \propto$ Incident light

IR detection

Build a circuit that:

- Uses an OP805 and a resistor to detect variations in light with a voltmeter.
- Determine whether increasing or decreasing the load resistance makes it more sensitive
- ❖ Note: OP805 will see some room light use your hand to block it, and use the voltmeter to detect the change in signal.

Switching Time Test Circuit

 -0 V_{CC} - 5 V

₹ \sim V_{OUT} \S R_L – 100 Ω Light source is a pulsed gallium arsenide LED with a rise time of less than 500 ns. LED output is

Selecting R_L ….

 $\overline{}$

Vout = $I_c * R_l$

Analog circuits – filtering and detection

 $Z_2/Z_1 = 3$

What is the result of the following:

Analog circuits – filtering and detection

Analog circuits – DC block

Capacitors:

- Block DC
- Pass high frequencies $> 1/(2\pi RC)$

DC block

Imaging adding a DC block to your photodetector circuit:

• Which circuit would you build? Why?

Analog circuits – filtering and detection

Eg 2:
$$
Z_2 = 100kΩ
$$

\n $Z_1 = 1 Ω$ $V_{out} = -100,000 V_{in}!$

Several problems:

- $I_1 = 1$ A for $V_{in} = 1$ V !! (excessive load for upstream circuitry)
- Gain Bandwidth product ~ 3 MHz. This would limit the bandwidth of the amplifier from DC up to 30 Hz (i.e. not a very responsive system!).

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Since V₋ is a virtual ground, input impedance seen by V_{in} is Z_1

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations

Since Op-amp inputs source or sink very little current (depends on type) , input impedance in this case is very high. This is a commonly used buffer to separate your low impedance circuit from a sensitive source that you need to measure without drawing current.

 $+$

 $V -$

 ν in $\overline{}$ Vout

electrical characteristics, $V_{CC\pm}$ = \pm 15 V (unless otherwise noted)

ţ.

Gain-Bandwidth limit $(Hz) = Gain * Max$. Frequency = CONSTANT

electrical characteristics, $V_{CC\pm}$ = ±15 V (unless otherwise noted)

ŗ

TL082: Gain*Bandwidth $=$ 3 MHz

 \rightarrow This means that at a gain of 100, Bandwidth is 30 kHz.

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Op-amp input voltages (V_+, V_-) must be at least a few volts away from the power rails (+Vcc, -Vcc). Applying input voltages equal or near the power rails will cause the Op-amp to behave unexpectedly.

Rail-to-rail Op-amps are an expensive solution to this limitation.

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current / voltage limitations

Op-amp output terminals can only provide a few mA of current. Motors, lamps and similar high current devices cannot typically be driven by a normal OPamp. High power Op-amps exist that can provide much higher current levels. Output voltage range is also limited within a few volts of the power rails.

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

Op-amp terminals can act as small current sources. These Bias Currents can become large error or offset voltages if the resistors in the circuit are large.

Eg: 20 nA bias current $*$ 10 M Ω = 200 mV!

electrical characteristics, $V_{CC+} = \pm 15$ V (unless otherwise noted)

ţ.

₽

Things to consider:

- Input impedance
- Gain Bandwidth product
- Bias Currents
- Voltage limitations
- Output current limitations

The circuit above corrects for bias current induced error and is now only subject to offset current. $Z3 = Z1||Z2$

Summary:

- Keep resistors in 1K to 500K range unless you really know what you're doing.
- Don't ask a single amplifier to provide huge gains (>30?)
- Don't drive motors, lamps, or other heavy loads with a normal op-amp (power op-amps exist for this, or use a transistor)
- Keep input voltages away from the op-amp voltage rails (unless using rail-to-rail opamps)

Analog circuits – filtering and detection

To understand filters you should first understand the difference between the TIME DOMAIN and FREQUENCY DOMAIN

"Transfer Function" = Vout/Vin = $H(\omega)$

So:
$$
V_{out}(\omega) = H(\omega)^* V_{in}(\omega)
$$

This is all in terms of ω since, in general, impedances are functions of ω.

$$
Z_{cap} = 1/j \omega C
$$

\n
$$
Z_{ind} = j \omega L
$$

\n
$$
Z_{res} = R
$$

Similar to voltage divider: ϵ except ω dependent.

$$
V_{\text{out}}\left(\omega\right) = [V_{\text{in}}(\omega)/(Z_1 + Z_2)] \cdot Z_2
$$

$$
H(\omega) = \frac{Z_2}{Z_1 + Z_2}
$$

So: $H(\omega) = Z_2/(Z_1+Z_2)$

For resistors, this is just the well known voltage divider: $R_2/(R_1+R_2)$

Now plug in a resistor and a capacitor:

For low frequencies (small ω), H = 1 For high frequencies (large ω), $H = 0$ $j\omega RC$ For migh irequencies (large ω), *RC* This is a LOW PASS FILTER *H* ω ω + = 1 $\omega = \frac{1}{1}$

At $\omega = 1/RC$, H begins to decrease in amplitude.

Analog circuits: Transfer Functions

Bode plots: a graphical representation of frequency response on logarithmic axes.

Vertical axis:

 $20log_{10}(H)$

Horizontal axis:

(20 is used instead of 10 so the result will represent power \sim V^{2})

 -3 dB $=$ 1/2 as much power as 0 dB

 V_{out} is $1/\sqrt{2}$ of V_{in} at -3dB

 $\log_{10}(f)$ Log of frequency is used to ensure
 $\log_{10}(f)$ linear plats from 1/f or 1/fl function linear plots from $1/f$ or $1/fⁿ$ functions

Pole: $1/(1+j\omega/\omega_0)$ -20 db/decade in amplitude after ω_0 , -90 phase

Zero: $(1+j\omega/\omega_0)$ $+20$ db/decade in amplitude after ω_0 , $+90$ phase

Analog circuits: Simple Pole $H(\omega) = \frac{1}{1 + j\omega RC}$

⁻⁹⁰ deg

Analog circuits: Simple Zero

 $H(\omega) = 1 + j\omega RC$

 $+90$ deg

Analog circuits: Active Filters

Analog circuits: Transfer Functions

Bode plots: a graphical representation of frequency response on logarithmic axes.

Pole: $1/(1+j\omega/\omega_0)$ -20 db/decade in amplitude after ω_0 , -90 phase

Zero: $(1+j\omega/\omega_0)$ +20 db/decade in amplitude after ω_0 , +90 phase

Analog circuits: Active Filters

More advanced filters: Biquad

42

Discrete devices: diodes

SUPER-DIODE rectifier circuit This circuit acts like a perfect diode, without the 0.7V deadband prior to turn-on.

What bad thing happens if R1 is too big?

- filter out
- Consider the response time you want

Zener Diodes

Use 5V Zener Diodes to protect your TINAH Board

Zener diodes conduct under reverse bias when a specific voltage is exceeded – in our case 5.1V

Debugging Circuits

Learn to systematically check your circuits:

• **Power rails:**

– Check that 15V is really 15V; if not, localize the component that is shorting the power rail. Check power at each chip.

• **Physical check**:

- Check pinouts, missing/loose wires, etc.
- **Isolate stages** where possible
	- Check output of stage $1 if$ ok plug into stage 2 and see if stage 1 output is degraded.
	- If ok, check output of stage 2 etc
- **Keep wiring TIDY!**

Lab 2 Tips

+ •**Capacitors – electrolytic capacitors have polarity, may explode if inserted backwards**

-

