
Thursday Lab: Lipos
Lipo = Lithium Polymer Battery = a powerful battery that will go up in flames when treated badly

For testing on the competition surface

● don’t take to your bench
● don’t operate without lipo alarm
● return to Bernhard after testing
● stop using when it beeps (empty!)

Feedback control is a way of automatically adjusting a variable to a
desired value despite possible external influence or variations.

No feedback (open loop):
Desired
temperature T

Determine typical
heater power required

Turn heater on or off

House temperature
responds to heat

Actual temperature varies depending
on whether windows are open, how
cold it is outside etc,..

Outside temperature

Eg: Heating your house.

Lecture 4 – Introduction to control

Control: Introduction

Feedback control is a way of automatically adjusting a variable to a
desired value despite possible external influence or variations.

Feedback
(closed loop):

Measure actual
house temperature
T

Desired
temperature T

Analyze difference
between Desired and
Actual temperature

Turn heater on or off

House temperature
responds to heat

Outside temperature

The purpose of control theory is to make
these two numbers the same despite external

influences Feedback control is a way of automatically adjusting a variable to a
desired value despite possible external influence or variations.

Feedback
(closed loop):

Measure actual
house temperature
T

Desired
temperature T

Analyze difference
between Desired and
Actual temperature

Turn heater on or off

House temperature
responds to heat

Outside temperature

=

Control: Introduction

ON/OFF control:

x
X = distance between center of robot and center of tape

while(1)
 {
 if (x=0) go_straight();
 if (x>0) turn_left();
 if (x<0) turn right();
 }

This tends to lead to oscillations around the center of the tape.

Control: Introduction

Proportional control:

x
X = distance between center of robot and center of tape

steer(int dir); - a hypothetical function that steers robot
 left (dir<0) or right (dir>0) in a radius of
 600”/dir.
while(1)
 {
 steer(K*X);
 }

K is the proportional gain of this feedback loop and MUST be
negative.
This is much better and more accurate than ON/OFF control, though
it will still have significant error and oscillate for large values of K.

x > 0

Control: Introduction

Proportional control:

x
X = distance between center of robot and center of tape

steer(int dir); - a hypothetical function that steers robot
 left (dir<0) or right (dir>0) in a radius of
 600”/dir.
while(1)
 {
 steer(K*X);
 } So what is the right algorithm?????

How do we optimize the robot to follow
tape better?

x > 0

Transfer functions revisited (Laplace transform notation: s~jω)

1) Proportionality:
vout(t) = K*vin(t)

Vout(s) = K*Vin(s)

V(s) is the Laplace transform of v(t).

Time domain

Frequency domain

θ

log ω log ω

10log |H(s)|

H(s) = Vout(s)/ Vin(s)

0

log(K)

Some rules:
∫
∞

−

−=
0

)()(dtetvsV st

H(s) = K

2) Integration:
Time domain

Frequency domain

θ

log ω log ω

10log|H(s)|

0

s
sKVsV

dttvKtv

in
out

inout

)()(

)()(

=

= ∫

-10 dB/dec

-90

s
KsH =)(

Pole

3) Differentiation:

θ

log ω log ω

10log|H(s)|

0

)()(

)()(

sKsVsV
dt

tdvKtv

inout

in
out

=

=

+10 dB/dec 90

KssH =)(

Zero

Feedback loops

Y = variable you’d like to control (eg: shaft angle of a servo motor)

X = your desired value of Y (eg: 10 degrees)

G(s)

H(s)

+
-

X(s) Y(s)

Y = G(X-HY)
Y(1+GH) = GX

Y/X = G/(1+GH) GH

G
X
Y

+
=

1

Motor and amplifier behavior

Sensor / compensator behavior

Error

G = forward transfer function, GH = loop transfer function

Feedback loops: stability

This loop will be unstable if GH = -1
 |GH|=1, phase(GH)= ±180 deg.

G(s)H(s) = -1 implies for some value of s ∞=
X
Y

i.e. there will exist a frequency for which the loop will provide infinite
amplification

GH
G

X
Y

+
=

1

Loop Stability

Partial stability criterion:
|GH| < 1 where the phase of GH is ±
180 deg. GH

G
X
Y

+
=

1

θ

log ω

log ω

10log|GH|

0

-180

-270

ω0
ω0

0 dB

Gain Margin

-8 dB

STABLE

Loop Stability

Partial stability criterion:
|GH| < 1 where the phase of GH is ±
180 deg. KGH

KG
X
Y

+
=

1

θ

log ω

log ω
0

-180

-270

ω0
ω0

0 dB

UNSTABLE

Increasing loop gain
eventually makes all
systems unstable

10log|GH|

Stability Summary

• Having one or fewer poles in the plant
function KGH ensures that the loop is
never unstable.

• The more poles exist in KGH, the harder
it will be to control.

• Problems will start to occur when
controlling at frequencies above the pole
frequencies.

• Increasing loop gain eventually makes
all systems unstable due to unexpected
high frequency poles.

KGH
KG

X
Y

+
=

1

Compensation

+
-

Vin Vout
H(s)

• A feedback system is usually divided into two transfer functions:
• The “plant” function (G(s)) which usually you cannot alter
(motor characteristics etc.)
• A compensator circuit H(s) that you can design to optimize
the feedback loop

• A common type of “all-purpose” compensation is PID:
• Proportional (Kp)
• Integral (Ki/s)
• Derivative (sKd)

G(s)

PID Compensation

Typical PID transfer function:

H(s) = Ktot(Kp+Ki/s+sKd)

The various gains (Ktot,Kp,Ki,Kd) are adjusted to control how much
of each type of compensation is applied for a specific plant
function G(s).

This adjustment is referred to as “tuning” and is often done
iteratively (a slightly improved form of trial and error) when the
plant function G is not well known.

+
-

Vin Vout
H(s) G(s)

PID example: position servo (demo)

H(s) +
-

Vset
θout

k

Verror
k

θin
K/(s(s+a))

PID Motor
Master

Pot

Vpot

TINAH Board

H(s)
+

G(s)

Ain: θin

Pwm out

 θout

kslave

-
analog(0)

motor code Mechanical
connection

potentiometer

Slave

Pot

kmaster

PID example: position servo

H(s) +
-

Vset
θout

k

Verror
k

θin
K/(s(s+a))

PID Motor Knob

Pot

Vpot

Motor transfer function:

∫= dtmaxωθ

∫ ∫= dtαθ (at high frequencies: G=K/s2)

(at low frequencies: G=K/s)

Inertia
Torque

=α

)(
)(

ass
KsG
+

=

∫= ωθ ∫= αω

PID example: position servo

H(s) +
-

Vset
θout

k

Verror
k

θin
K/(s(s+a))

PID Motor Knob

Pot Vpot

Loop transfer function (stability analysis):

)(
)(

ass
KsG
+

= H(s) =?

Try proportional control: H(s) = Kp

Stability: position servo – P control

Loop transfer function (P only):

)(
)(

ass
KK

sGH p

+
=

error
p

out V
ass

KK
)(+

=θ

out
p

error KK
assV θ)(+

=

0=errorV at s=0!

θ

log ω

log ω

log|GH|

-90

-180

a

0 dB

Gain Margin

10a

10a

Stable for limited gain

Stability: position servo – I control

Open loop transfer function (I only):

)(
)(2 ass

KKsGH i

+
=

θ

log ω -180

-270

s
KsH i=)(

Phase crosses –180 at DC, with infinite DC gain!
Inherently unstable at s=0

Stability: position servo – D control

Open loop transfer function (D only):

)(
)(

as
KKsGH d

+
=

θ

log ω 0

-90

dsKsH =)(

Phase always less than –180
Stable even for large gains!

Problems:
• May be hard to implement due to amplification of fast transients.
• Can be combined with P gain to add high gain stability and low SS error
• Model is not complete – loop will still be unstable at very high gains.

out
d

error KK
asV θ)(+

= SS error ≠ 0!

Tuning PID
Often PID tuning is done by nearly trial and error. Here is a common
Procedure which works for many (but not all) plant functions.

• Set P=I=D=0
• Increase P slightly and ensure that the sign of the gains is correct.
• Increase P until oscillations begin
• Increase D to dampen oscillations
• Iterate increasing P and D until fast response is achieved with little
overshoot
• Increase I to remove any Steady State error.
• If overshoot is too large try decreasing P and D.
• Test with step response:

Crit. damped over damped under damped

USE external pots or menus to adjust!!!!!

Control: Introduction
How to measure X (distance from tape):

Use QRD1114 reflectance sensors to detect lack of reflectance from tape.

tape
sensor

Control: Introduction
How to measure X:

x

X = distance between center of robot and center of tape
x > 0

You can form a rough approximation of X by digital to
analog conversion of your digital inputs with history:

Situation Left sensor Right Sensor X
Both sensors on tape 1 1 0
Left sensor off tape, right on 0 1 -1
Right sensor off tape, left on 1 0 +1
Both sensors off (right was last on) 0 0 -5
Both sensors off (left was last on) 0 0 +5

Please consider the following problem for a robot with differential
rear drive steering:

Which robot configuration has more poles in the transfer function
between I (current to motors) and x (distance of sensors from tape)?

x

pivot

sensors

x

pivot

sensors

1 2

x

l θ

v

∫
∫

+≈

+=

dtvl

dtvlx

θθ

θθ sinsin

s
vlX θθ +≈

)(ass
IK pwmbot

+
=θ

where
botI

rDTa 1)/(
∝

r1

Ibot is the chassis moment of inertia
T is motor torque
D is wheel diameter

θlX ~

s
vX θ

= for l = 0

at low v

0=inθ (we want robot to follow tape)

0=∴ inx
Actual x value in time domain:

Actual X in frequency domain:

Design tips for stability

• Minimize robot polar moment of inertia (Irobot)
• Maximize robot torque about polar axis (r1/Dwheel)
• Maximize distance from polar axis to tape sensors (l)
• Minimize sensor dead band
• Change gear ratio / wheel size to increase torque / reduce
speed if you find stability is only achieved at very low motor
powers.

)/(
/

1

1

wheelrobotpwm

wheelpwm

DIIKrss
DIKr

+
=θ

s
vlX θθ +≈

Linearization of non-linear functions

Control can be very difficult if G is non-linear.

PWM drive (combined with friction) yields a very non-linear
torque curve:
 T

PWM
Solution: Linearize this curve in software by mapping PWM to desired
Torque

PWMout

PWMin

Analog PID in software (Servo control)

loop
 pot = analog(6);
 set = knob();

 error = set-pot;
 p=kp*error;
 d=kd*(error-lasterr);
 i=ki*error+i;
 if (i>maxi) i = maxi;
 if (i<-maxi) i = -maxi;
 g = p+i+d;
 motor(3,g);
 lasterr=error;

Feedback potentiometer

Set point

Proportional

Derivative

Integration

Anti-windup

Because i is an integral, it will build up to large values over time for a
constant error. An anti-windup check must be put in place to avoid it
overwhelming P and D control when the error is removed.

	Thursday Lab: Lipos
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

