
Thursday Lab: Lipos 
Lipo = Lithium Polymer Battery = a powerful battery that will go up in flames when treated badly 

For testing on the competition surface 
 
● don’t take to your bench 
● don’t operate without lipo alarm 
● return to Bernhard after testing 
● stop using when it beeps (empty!) 



Feedback control is a way of automatically adjusting a variable to a 
desired value despite possible external influence or variations. 

No feedback (open loop): 
Desired 
temperature T 

Determine typical 
heater power required 

Turn heater on or off 

House temperature 
responds to heat 

Actual temperature varies depending 
on whether windows are open, how 
cold it is outside etc,.. 

Outside temperature 

Eg: Heating your house. 

Lecture 4 – Introduction to control 



Control: Introduction 

Feedback control is a way of automatically adjusting a variable to a 
desired value despite possible external influence or variations. 

Feedback 
(closed loop): 

Measure actual 
house temperature 
T 

Desired 
temperature T 

Analyze difference 
between Desired and 
Actual temperature 

Turn heater on or off 

House temperature 
responds to heat 

Outside temperature 



The purpose of control theory is to make 
these two numbers the same despite external 

influences Feedback control is a way of automatically adjusting a variable to a 
desired value despite possible external influence or variations. 

Feedback 
(closed loop): 

Measure actual 
house temperature 
T 

Desired 
temperature T 

Analyze difference 
between Desired and 
Actual temperature 

Turn heater on or off 

House temperature 
responds to heat 

Outside temperature 

= 



Control: Introduction 

ON/OFF control: 

x 
X = distance between center of robot and center of tape 

while(1) 
 { 
 if (x=0) go_straight(); 
 if (x>0) turn_left(); 
 if (x<0) turn right(); 
 } 

This tends to lead to oscillations around the center of the tape. 



Control: Introduction 

Proportional control: 

x 
X = distance between center of robot and center of tape 
 
steer(int dir);  - a hypothetical function that steers robot 
  left (dir<0) or right (dir>0) in a radius of 
  600”/dir. 
while(1) 
 { 
 steer(K*X); 
 } 

K is the proportional gain of this feedback loop and MUST be 
negative. 
This is much better and more accurate than ON/OFF control, though 
it will still have significant error and oscillate for large values of K. 

x > 0 



Control: Introduction 

Proportional control: 

x 
X = distance between center of robot and center of tape 
 
steer(int dir);  - a hypothetical function that steers robot 
  left (dir<0) or right (dir>0) in a radius of 
  600”/dir. 
while(1) 
 { 
 steer(K*X); 
 } So what is the right algorithm????? 
 
How do we optimize the robot to follow 
tape better? 

x > 0 



Transfer functions revisited (Laplace transform notation: s~jω) 

1) Proportionality:  
vout(t) = K*vin(t) 

Vout(s) = K*Vin(s) 

V(s) is the Laplace transform of v(t).  

Time domain 

Frequency domain 

θ 

log ω log ω 

10log |H(s)| 

H(s) = Vout(s)/ Vin(s)   
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log(K) 
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2) Integration:  
Time domain 

Frequency domain 
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3) Differentiation:  
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Feedback loops 

Y = variable you’d like to control (eg: shaft angle of a servo motor) 
 
X = your desired value of Y (eg: 10 degrees) 

G(s) 

H(s) 

+ 
- 

X(s) Y(s) 

Y = G(X-HY) 
Y(1+GH) = GX 
 
Y/X = G/(1+GH) GH

G
X
Y

+
=

1

Motor and amplifier behavior 

Sensor / compensator behavior 

Error 

G = forward transfer function, GH = loop transfer function 



Feedback loops: stability 

This loop will be unstable if      GH = -1 
 |GH|=1,   phase(GH)= ±180 deg. 

G(s)H(s) = -1  implies                      for some value of s    ∞=
X
Y

i.e. there will exist a frequency for which the loop will provide infinite 
amplification 

GH
G

X
Y

+
=

1



Loop Stability 

Partial stability criterion:  
|GH| < 1 where the phase of GH is ± 
180 deg. GH

G
X
Y

+
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log ω 

log ω 

10log|GH| 
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-180 

-270 

ω0 
ω0 

0 dB 

Gain Margin 

-8 dB 

STABLE 



Loop Stability 

Partial stability criterion:  
|GH| < 1 where the phase of GH is ± 
180 deg. KGH

KG
X
Y

+
=

1

θ 

log ω 

log ω 
0 

-180 

-270 

ω0 
ω0 

0 dB 

UNSTABLE 

Increasing loop gain  
eventually makes all 
systems unstable 

10log|GH| 



Stability Summary 

• Having one or fewer poles in the plant 
function KGH ensures that the loop is 
never unstable. 
 

• The more poles exist in KGH, the harder 
it will be to control. 
 

• Problems will start to occur when 
controlling at frequencies above the pole 
frequencies. 
 

• Increasing loop gain  eventually makes 
all systems unstable due to unexpected 
high frequency poles. 
 

KGH
KG

X
Y

+
=

1



Compensation 

+ 
- 

Vin Vout 
H(s) 

• A feedback system is usually divided into two transfer functions: 
• The “plant” function (G(s)) which usually you cannot alter 
(motor characteristics etc.)  
• A compensator circuit H(s) that you can design to optimize 
the feedback loop 

• A common type of “all-purpose” compensation is PID: 
• Proportional (Kp) 
• Integral (Ki/s) 
• Derivative (sKd) 

G(s) 



PID Compensation 

Typical PID transfer function: 
 
H(s) = Ktot(Kp+Ki/s+sKd) 
 
The various gains (Ktot,Kp,Ki,Kd) are adjusted to control how much 
of each type of compensation is applied for a specific plant 
function G(s). 
 
This adjustment is referred to as “tuning” and is often done 
iteratively (a slightly improved form of trial and error) when the 
plant function G is not well known. 

+ 
- 

Vin Vout 
H(s) G(s) 



PID example: position servo (demo) 

H(s) + 
- 

Vset 
θout 

k 

Verror 
k 

θin 
K/(s(s+a)) 

PID Motor 
Master 

Pot 

Vpot 

TINAH Board 

H(s) 
+ 

G(s) 

Ain: θin 

Pwm out 

 θout 

kslave 

- 
analog(0) 

motor code Mechanical 
connection 

potentiometer 

Slave 

Pot 

kmaster 



PID example: position servo 

H(s) + 
- 

Vset 
θout 

k 

Verror 
k 

θin 
K/(s(s+a)) 

PID Motor Knob 

Pot 

Vpot 

Motor transfer function: 

∫= dtmaxωθ

∫ ∫= dtαθ (at high frequencies: G=K/s2) 

(at low frequencies: G=K/s) 

Inertia
Torque
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PID example: position servo 

H(s) + 
- 

Vset 
θout 

k 

Verror 
k 

θin 
K/(s(s+a)) 

PID Motor Knob 

Pot Vpot 

Loop transfer function (stability analysis): 
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Try proportional control:       H(s) = Kp 



Stability: position servo – P control 

Loop transfer function (P only): 
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Stable for limited gain 



Stability: position servo – I control 

Open loop transfer function (I only): 
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Phase crosses –180 at DC, with infinite DC gain!  
Inherently unstable at s=0 



Stability: position servo – D control 

Open loop transfer function (D only): 

)(
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as
KKsGH d

+
=

θ 

log ω 0 
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Phase always less than –180 
Stable even for large gains! 

Problems: 
• May be hard to implement due to amplification of fast transients. 
• Can be combined with P gain to add high gain stability and low SS error 
• Model is not complete – loop will still be unstable at very high gains. 
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d
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Tuning PID 
Often PID tuning is done by nearly trial and error. Here is a common 
Procedure which works for many (but not all) plant functions. 
 
• Set P=I=D=0 
• Increase P slightly and ensure that the sign of the gains is correct. 
• Increase P until oscillations begin 
• Increase D to dampen oscillations 
• Iterate increasing P and D until fast response is achieved with little 
overshoot 
• Increase I to remove any Steady State error. 
• If overshoot is too large try decreasing P and D. 
• Test with step response: 

Crit. damped over damped under damped 

USE external pots or menus to adjust!!!!! 



Control: Introduction 
How to measure X (distance from tape): 

Use QRD1114 reflectance sensors to detect lack of reflectance from tape. 

tape 
sensor 



Control: Introduction 
How to measure X: 

x 

X = distance between center of robot and center of tape 
x > 0 

You can form a rough approximation of X by digital to 
analog conversion of your digital inputs with history: 

Situation Left sensor Right Sensor X 
Both sensors on tape 1 1 0 
Left sensor off tape, right on 0 1 -1 
Right sensor off tape, left on 1 0 +1 
Both sensors off (right was last on) 0 0 -5 
Both sensors off (left was last on) 0 0 +5 



Please consider the following problem for a robot with differential 
rear drive steering: 
 
Which robot configuration has more poles in the transfer function 
between I (current to motors) and x (distance of sensors from tape)? 

x 

pivot 

sensors 

x 

pivot 

sensors 

1 2 
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Ibot is the chassis moment of inertia 
T is motor torque 
D is wheel diameter 

θlX ~

s
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= for l = 0 

at low v 

0=inθ (we want robot to follow tape) 

0=∴ inx
Actual x value in time domain: 

Actual X in frequency domain: 



Design tips for stability 
 
• Minimize robot polar moment of inertia (Irobot) 
• Maximize robot torque about polar axis (r1/Dwheel) 
• Maximize distance from polar axis to tape sensors (l) 
• Minimize sensor dead band 
• Change gear ratio / wheel size to increase torque / reduce 
speed if you find stability is only achieved at very low motor 
powers. 
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Linearization of non-linear functions 

Control can be very difficult if G is non-linear.  
 
PWM drive (combined with friction) yields a very non-linear 
torque curve: 
 T 

PWM 
Solution: Linearize this curve in software by mapping PWM to desired 
Torque 

PWMout 

PWMin 



Analog PID in software (Servo control) 

loop  
 pot = analog(6); 
 set = knob(); 
 
 error = set-pot; 
 p=kp*error; 
 d=kd*(error-lasterr); 
 i=ki*error+i; 
  if (i>maxi) i = maxi; 
  if (i<-maxi) i = -maxi; 
 g = p+i+d;  
 motor(3,g); 
 lasterr=error; 
  

Feedback potentiometer 

Set point 

Proportional 

Derivative 

Integration 

Anti-windup 

Because i is an integral, it will build up to large values over time for a 
constant error. An anti-windup check must be put in place to avoid it 
overwhelming P and D control when the error is removed. 
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