

		WEC Technology Options? Wave Energy? Resource Assessment Technology Integration					
	Wave Device Class	Definition	Example				
UNY	Attenuators (Pelamis, Biopower)	• Aligned parallel to the direction of wave propagation.					
(//)	Overtopping Devices (Wave Dragon, Limpet, Manchester Bobber, OceanLinx, ORECON, SEEWEC)	• Top of breaking wave used to drive low-head turbine.					
1111	Point Absorbers (OPT, WaveBob, SyncWave)	• Omni-directional absorption – horizontal or vertical component of wave motion.					
	Terminators (AWS, OREC)	• Aligned perpendicular to the direction of wave propagation.					

9

17

				Wave Energy? Resource Technology Inte	e Ass grati	essm on	ient		
DLE MOORING RESPONSE IDEAL MOORING RESPONSE									
Significant wave height, Hs (m)	Domina Tp = 5	nt perio Tp = 8	d, Tp (s) Tp = 11	Significant wave height, Hs (m)	Domina Tp = 5	nt perio Tp = 8	od, Tp (s) Tp = 11		
Hs = 2	1.19	0.69	0.80	$H_S = 2$	0.96	1.00	1.03		
Hs = 5	1.24	1.00	0.75	$H_5 = 5$	0.96	1.02	1.03		
$H_S = 8$	1.03	1.07	0.81	$H_3 = 8$	1.14	0.99	1.03		
Hs = 2 Hs = 5	1.05	0.77	0.86	$H_5 = 2$ $H_5 = 5$	0.89	1.05	1.15		
Hs = 2	1.05	0.77	0.86	$H_5 = 2$	0.89	1.05	1.15		
$H_5 = 8$	0.90	1.21	1.06	$H_5 = 8$	1.00	0.70	0.82		
	Table B2: Scaled system: RAO of spar heave for bridle mooring Table B6: Scaled system: RAO of spar heave for ideal mooring Dominant period, Tp (s) Dominant period, Tp (s) Significant wave height, Hs (m) Tp = 8 Tp = 11								
Table B2: Scaled system: RAO of sp	par heav Domina Tp = 5	nt perio Tp = 8	d, Tp (s) Tp = 11	Significant wave height, Hs (m)	Domina Tp = 5	nt perio	od, Tp (s) Tp = 11		
Table B2: Scaled system: RAO of sp Significant wave height, Hs (m)	Domina Tp = 5 1.46	nt perio Tp = 8	d, Tp (s) Tp = 11 0.56	Significant wave height, Hs (m) H3 - 2	Domina Tp = 5	Tp = 8	od, Tp (s) Tp = 11 0.92		
Table B2: Scaled system: RAO of sp Significant wave height, Hs (m) Hs = 2 Hs = 5	Domina Tp = 5 1.46 1.31	nt perio Tp = 8 0.54 1.10	d, Tp (s) Tp = 11 0.56 0.68	Significant wave height, Hs (m) $H_3 = 2$ $H_5 = 5$	Domina Tp = 5 1.12 0.93	Tp = 8 0.95 0.63	od, Tp (s) Tp = 11 0.92 0.56		

		Where will it b ave Energy? Resource As Technology Integra	De used?						
Results	Results indicate that a single WEC has the potential displace a								
significa	significant amount of diesel generation & save hundreds of								
\sim tonnes of CO ₂ .									
Results shown are based on the demonstration device design									
which produces 18-20 kW (mean yearly output).									
111111	(St. George Island	Hot Springs Cove	- LASS					
	Location	56.57°N, 169.61°W	49.36°N, 126.27°W	A					
	Population	100	180						
	Electricity Demand	1380 MWh	965 Mwh						
	Wave generated electricity	122 MWh	161 Mwh						
	Fuel Saving	1.85E5 L / year	1.78E5 L / year						
	CO ₂ savings	480 tCO ₂ / year	475 tCO ₂ / year						

